Skip to main content

Mechanisms of Drug-Induced Cholestasis

  • Protocol
  • First Online:
Experimental Cholestasis Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1981))

Abstract

Cholestasis can be defined as any situation of impaired bile secretion with concomitant accumulation of bile acids in the liver or in the systemic circulation. A variety of factors may evoke cholestasis, including genetic disorders, metabolic pathologies, infectious diseases, immunogenic stimuli, and drugs. Drug-induced cholestasis is a mechanistically complex process. At least three triggering factors of drug-induced cholestasis have been described, including effects on drug transporters, various hepatocellular changes, and altered bile canaliculi dynamics. These stimuli induce two cellular responses, each typified by a number of key events, namely a deteriorative response activated by bile acid accumulation and an adaptive response aimed at decreasing the uptake and increasing the export of bile acids into and from the liver, respectively. The mechanistic scenario of drug-induced cholestasis is described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AOP(s):

Adverse outcome pathway(s)

ATF:

Activating transcription factor

BSEP:

Bile salt export pump

CHOP:

CCAAT-enhancer-binding protein homologous protein

CYP:

Cytochrome P450

DIC:

Drug-induced cholestasis

DILI:

Drug-induced liver injury

DNA:

Deoxyribonucleic acid

Egr1:

Early growth response factor-1

ER:

Endoplasmic reticulum

FXR:

Farnesoid X receptor

IRE1α:

Inositol-requiring protein 1α

Keap1:

Kelch-like ECH-associated protein 1

LC3:

Microtubule-associated protein 1 light chain 3

MDR3:

Multidrug resistance protein 3

MLKL:

Mixed lineage kinase domain-like

MRP2/3:

Multidrug resistance-associated protein 2/3

NLRP:

Nucleotide-binding and oligomerization leucine-rich repeat protein

Nrf2:

Nuclear related factor 2

PERK:

Protein kinase RNA-like endoplasmic reticulum kinase

PXR:

Pregnane X receptor

RIP:

Receptor interacting protein

ROCK:

Rho-associated protein kinase

ROS:

Reactive oxygen species

TLR9:

Toll-like receptor 9

UGT:

Uridine diphosphate glucuronosyltransferase

References

  1. Oorts M, Richert L, Annaert P (2015) Drug-induced cholestasis detection in cryopreserved rat hepatocytes in sandwich culture. J Pharmacol Toxicol Methods 73:63–71

    Article  CAS  PubMed  Google Scholar 

  2. Bjornsson E, Olsson R (2005) Outcome and prognostic markers in severe drug-induced liver disease. Hepatology 42:481–489

    Article  CAS  PubMed  Google Scholar 

  3. Ozer J, Ratner M, Shaw M et al (2008) The current state of serum biomarkers of hepatotoxicity. Toxicology 245:194–205

    Article  CAS  PubMed  Google Scholar 

  4. Olson H, Betton G, Robinson D et al (2000) Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol 32:56–67

    Article  CAS  PubMed  Google Scholar 

  5. Laverty HG, Antoine DJ, Benson C et al (2010) The potential of cytokines as safety biomarkers for drug-induced liver injury. Eur J Clin Pharmacol 66:961–976

    Article  CAS  PubMed  Google Scholar 

  6. Vorrink SU, Zhou Y, Ingelman-Sundberg M et al (2018) Prediction of drug-induced hepatotoxicity using long-term stable primary hepatic 3D spheroid cultures in chemically defined conditions. Toxicol Sci 163:655–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bell CC, Lauschke VM, Vorrink SU et al (2017) Transcriptional, functional, and mechanistic comparisons of stem cell–derived hepatocytes, HepaRG cells, and three-dimensional human hepatocyte spheroids as predictive in vitro systems for drug-induced liver injury. Drug Metab Dispos 45:419–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bale SS, Vernetti L, Senutovitch N et al (2014) In vitro platforms for evaluating liver toxicity. Exp Biol Med 239:1180–1191

    Article  CAS  Google Scholar 

  9. Gijbels E, Vinken M (2017) An update on adverse outcome pathways leading to liver injury. Appl In Vitro Toxicol 3:283–285

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vinken M (2018) In vitro prediction of drug-induced cholestatic liver injury: a challenge for the toxicologist. Arch Toxicol 92:1909–1912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vinken M, Landesmann B, Goumenou M et al (2013) Development of an adverse outcome pathway from drug mediated bile salt export pump inhibition to cholestatic liver injury. Toxicol Sci 136:97–106

    Article  CAS  PubMed  Google Scholar 

  12. Pauli-Magnus C, Meier PJ (2006) Hepatobiliary transporters and drug-induced cholestasis. Hepatology 44:778–787

    Article  CAS  PubMed  Google Scholar 

  13. Yang K, Köck K, Sedykh A et al (2013) An updated review on drug-induced cholestasis: mechanisms and investigation of physicochemical properties and pharmacokinetic parameters. J Pharm Sci 102:3037–3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ramboer E, Vanhaecke T, Rogiers V et al (2013) Primary hepatocyte cultures as prominent in vitro tools to study hepatic drug transporters. Drug Metab Rev 45:196–217

    Article  CAS  PubMed  Google Scholar 

  15. Morgan RE, Trauner M, van Staden CJ et al (2010) Interference with bile salt export pump function is a susceptibility factor for human liver Injury in drug development. Toxicol Sci 118:485–500

    Article  CAS  PubMed  Google Scholar 

  16. de Lima Toccafondo Vieira M, Tagliati CA (2014) Hepatobiliary transporters in drug-induced cholestasis: a perspective on the current identifying tools. Expert Opin Drug Metab Toxicol 10:581–597

    Article  PubMed  Google Scholar 

  17. Kotsampasakou E, Ecker GF (2017) Predicting drug-induced cholestasis with the help of hepatic transporters: an in silico modeling approach. J Chem Inf Model 57:608–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dixon PH, Weerasekera N, Linton KJ et al (2000) Heterozygous MDR3 missense mutation associated with intrahepatic cholestasis of pregnancy: evidence for a defect in protein trafficking. Hum Mol Genet 9:1209–1217

    Article  CAS  PubMed  Google Scholar 

  19. de Vree JML, Jacquemin E, Sturm E et al (1998) Mutations in the MDR3 gene cause progressive familial intrahepatic cholestasis. Proc Natl Acad Sci U S A 95:282–287

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zollner G, Trauner M (2008) Mechanisms of cholestasis. Clin Liver Dis 12:1–26

    Article  PubMed  Google Scholar 

  21. Lang C, Meier Y, Stieger B et al (2007) Mutations and polymorphisms in the bile salt export pump and the multidrug resistance protein 3 associated with drug-induced liver injury. Pharmacogenet Genomics 17:47–60

    Article  CAS  PubMed  Google Scholar 

  22. Trauner M, Arrese M, Soroka CJ et al (1997) The rat canalicular conjugate export pump (Mrp2) is down-regulated in intrahepatic and obstructive cholestasis. Gastroenterology 113:255–264

    Article  CAS  PubMed  Google Scholar 

  23. Garzel B, Yang H, Zhang L et al (2014) The role of bile salt export pump gene repression in drug-induced cholestatic liver toxicity. Drug Metab Dispos 42:318–322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Mottino AD, Cao J, Veggi LM et al (2002) Altered localization and activity of canalicular Mrp2 in estradiol-17β-D-glucuronide-induced cholestasis. Hepatology 35:1409–1419

    Article  CAS  PubMed  Google Scholar 

  25. Song J-Y, Van Noorden CJF, Frederiks WM (1998) The involvement of altered vesicle transport in redistribution of Ca2+, Mg2+-ATPase in cholestatic rat liver. Histochem J 30:909–916

    Article  CAS  PubMed  Google Scholar 

  26. Fickert P, Trauner M, Fuchsbichler A et al (2002) Cytokeratins as targets for bile acid-induced toxicity. Am J Pathol 160:491–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Song JY, Van Noorden CJ, Frederiks WM (1997) Alterations of hepatocellular intermediate filaments during extrahepatic cholestasis in rat liver. Virchows Arch 430:253–260

    Article  CAS  PubMed  Google Scholar 

  28. Strnad P, Stumptner C, Zatloukal K et al (2008) Intermediate filament cytoskeleton of the liver in health and disease. Histochem Cell Biol 129:735–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fickert P, Fuchsbichler A, Wagner M et al (2009) The role of the hepatocyte cytokeratin network in bile formation and resistance to bile acid challenge and cholestasis in mice. Hepatology 50:893–899

    Article  CAS  PubMed  Google Scholar 

  30. Song JY, Van Marle J, Van Noorden CJ et al (1996) Redistribution of Ca2+, Mg2+-ATPase activity in relation to alterations of the cytoskeleton and tight junctions in hepatocytes of cholestatic rat liver. Eur J Cell Biol 71:277–285

    CAS  PubMed  Google Scholar 

  31. Chen X, Zhang C, Wang H et al (2009) Altered integrity and decreased expression of hepatocyte tight junctions in rifampicin-induced cholestasis in mice. Toxicol Appl Pharmacol 240:26–36

    Article  CAS  PubMed  Google Scholar 

  32. Mottino AD, Hoffman T, Crocenzi FA et al (2007) Disruption of function and localization of tight junctional structures and Mrp2 in sustained estradiol-17β-D-glucuronide-induced cholestasis. Am J Physiol Gastrointest Liver Physiol 293:G391–G402

    Article  CAS  PubMed  Google Scholar 

  33. Hyogo H, Tazuma S, Kajiyama G (1999) Transcytotic vesicle fusion is reduced in cholestatic rats: redistribution of phospholipids in the canalicular membrane. Dig Dis Sci 44:1662–1668

    Article  CAS  PubMed  Google Scholar 

  34. Yasumiba S, Tazuma S, Ochi H et al (2001) Cyclosporin A reduces canalicular membrane fluidity and regulates transporter function in rats. Biochem J 354:591–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Smith DJ, Gordon ER (1987) Membrane fluidity and cholestasis. J Hepatol 5:362–365

    Article  CAS  PubMed  Google Scholar 

  36. Sharanek A, Burban A, Burbank M et al (2016) Rho-kinase/myosin light chain kinase pathway plays a key role in the impairment of bile canaliculi dynamics induced by cholestatic drugs. Sci Rep 6:24709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Burbank MG, Burban A, Sharanek A et al (2016) Early alterations of bile canaliculi dynamics and the rho kinase/myosin light chain kinase pathway are characteristics of drug-induced intrahepatic cholestasis. Drug Metab Dispos 44:1780–1793

    Article  CAS  PubMed  Google Scholar 

  38. Burban A, Sharanek A, Hue R et al (2017) Penicillinase-resistant antibiotics induce non-immune-mediated cholestasis through HSP27 activation associated with PKC/P38 and PI3K/AKT signaling pathways. Sci Rep 7:1815

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Arduini A, Serviddio G, Tormos AM et al (2012) Mitochondrial dysfunction in cholestatic liver diseases. Front Biosci 4:2233–2252

    Article  Google Scholar 

  40. Wei Y, Rector RS, Thyfault JP et al (2008) Nonalcoholic fatty liver disease and mitochondrial dysfunction. World J Gastroenterol 14:193–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hassanein T (2004) Mitochondrial dysfunction in liver disease and organ transplantation. Mitochondrion 4:609–620

    Article  CAS  PubMed  Google Scholar 

  42. Arduini A, Serviddio G, Escobar J et al (2011) Mitochondrial biogenesis fails in secondary biliary cirrhosis in rats leading to mitochondrial DNA depletion and deletions. Am J Physiol Gastrointest Liver Physiol 301:G119–G127

    Article  CAS  PubMed  Google Scholar 

  43. Spivey JR, Bronk SF, Gores GJ (1993) Glycochenodeoxycholate-induced lethal hepatocellular injury in rat hepatocytes. Role of ATP depletion and cytosolic free calcium. J Clin Invest 92:17–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Palmeira CM, Rolo AP (2004) Mitochondrially-mediated toxicity of bile acids. Toxicology 203:1–15

    Article  CAS  PubMed  Google Scholar 

  45. Yu T, Wang L, Lee H et al (2014) Decreasing mitochondrial fission prevents cholestatic liver injury. J Biol Chem 289:34074–34088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schulz S, Schmitt S, Wimmer R et al (2013) Progressive stages of mitochondrial destruction caused by cell toxic bile salts. Biochim Biophys Acta 1828:2121–2133

    Article  CAS  PubMed  Google Scholar 

  47. Begriche K, Massart J, Robin M-A et al (2011) Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver. J Hepatol 54:773–794

    Article  CAS  PubMed  Google Scholar 

  48. Bhat TA, Chaudhary AK, Kumar S et al (2017) Endoplasmic reticulum-mediated unfolded protein response and mitochondrial apoptosis in cancer. Biochim Biophys Acta 1867:58–66

    CAS  Google Scholar 

  49. Malhi H, Kaufman RJ (2011) Endoplasmic reticulum stress in liver disease. J Hepatol 54:795–809

    Article  CAS  PubMed  Google Scholar 

  50. Tamaki N, Hatano E, Taura K et al (2008) CHOP deficiency attenuates cholestasis-induced liver fibrosis by reduction of hepatocyte injury. Am J Physiol Gastrointest Liver Physiol 294:G498–G505

    Article  CAS  PubMed  Google Scholar 

  51. Szalowska E, Stoopen G, Groot MJ et al (2013) Treatment of mouse liver slices with cholestatic hepatotoxicants results in down-regulation of Fxr and its target genes. BMC Med Genet 6:39

    Google Scholar 

  52. Yao X, Li Y, Cheng X et al (2016) ER stress contributes to alpha-naphthyl isothiocyanate-induced liver injury with cholestasis in mice. Pathol Res Pract 212:560–567

    Article  CAS  PubMed  Google Scholar 

  53. Sharanek A, Azzi PB, Al-Attrache H et al (2014) Different dose-dependent mechanisms are involved in early cyclosporine a-induced cholestatic effects in hepaRG cells. Toxicol Sci 141:244–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Burban A, Sharanek A, Guguen-Guillouzo C et al (2018) Endoplasmic reticulum stress precedes oxidative stress in antibiotic-induced cholestasis and cytotoxicity in human hepatocytes. Free Radic Biol Med 115:166–178

    Article  CAS  PubMed  Google Scholar 

  55. Henkel AS, LeCuyer B, Olivares S et al (2017) Endoplasmic reticulum stress regulates hepatic bile acid metabolism in mice. Cell Mol Gastroenterol Hepatol 3:261–271

    Article  PubMed  Google Scholar 

  56. Birben E, Sahiner UM, Sackesen C et al (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5:9–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Perez MJ, Briz O (2009) Bile-acid-induced cell injury and protection. World J Gastroenterol 15:1677–1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tiao MM, Lin TK, Wang PW et al (2009) The role of mitochondria in cholestatic liver injury. Chang Gung Med J 32:346–353

    PubMed  Google Scholar 

  59. Copple BL, Jaeschke H, Klaassen CD (2010) Oxidative stress and the pathogenesis of cholestasis. Semin Liver Dis 30:195–204

    Article  CAS  PubMed  Google Scholar 

  60. Jaeschke H (2011) Reactive oxygen and mechanisms of inflammatory liver injury: present concepts. J Gastroenterol Hepatol 26:173–179

    Article  CAS  PubMed  Google Scholar 

  61. Cai S-Y, Ouyang X, Chen Y et al (2017) Bile acids initiate cholestatic liver injury by triggering a hepatocyte-specific inflammatory response. JCI Insight 2:e90780

    Article  PubMed  PubMed Central  Google Scholar 

  62. Allen K, Kim ND, Moon JO et al (2010) Upregulation of early growth response factor-1 by bile acids requires mitogen-activated protein kinase signaling. Toxicol Appl Pharmacol 243:63–67

    Article  CAS  PubMed  Google Scholar 

  63. Kim ND, Moon JO, Slitt AL et al (2006) Early growth response factor-1 is critical for cholestatic liver injury. Toxicol Sci 90:586–595

    Article  CAS  PubMed  Google Scholar 

  64. Gong Z, Zhou J, Zhao S et al (2016) Chenodeoxycholic acid activates NLRP3 inflammasome and contributes to cholestatic liver fibrosis. Oncotarget 7:83951–83963

    Article  PubMed  PubMed Central  Google Scholar 

  65. Rathinam Vijay AK, Vanaja Sivapriya K, Waggoner L et al (2012) TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 150:606–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Stehlik C, Lee SH, Dorfleutner A et al (2003) Apoptosis-associated speck-like protein containing a caspase recruitment domain is a regulator of procaspase-1 activation. J Immunol 171:6154–6163

    Article  CAS  PubMed  Google Scholar 

  67. Li P, He K, Li J et al (2017) The role of Kupffer cells in hepatic diseases. Mol Immunol 85:222–229

    Article  CAS  PubMed  Google Scholar 

  68. Woolbright BL, Antoine DJ, Jenkins RE et al (2013) Plasma biomarkers of liver injury and inflammation demonstrate a lack of apoptosis during obstructive cholestasis in mice. Toxicol Appl Pharmacol 273:524–531

    Article  CAS  PubMed  Google Scholar 

  69. Mitchell C, Mahrouf-Yorgov M, Mayeuf A et al (2011) Overexpression of Bcl-2 in hepatocytes protects against injury but does not attenuate fibrosis in a mouse model of chronic cholestatic liver disease. Lab Investig 91:273–282

    Article  CAS  PubMed  Google Scholar 

  70. Gujral JS, Liu J, Farhood A et al (2004) Reduced oncotic necrosis in Fas receptor-deficient C57BL/6J-lpr mice after bile duct ligation. Hepatology 40:998–1007

    Article  PubMed  Google Scholar 

  71. Afonso MB, Rodrigues PM, Simao AL et al (2016) Activation of necroptosis in human and experimental cholestasis. Cell Death Dis 7:e2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Linkermann A, Green DR (2014) Necroptosis. N Engl J Med 370:455–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sasaki M, Yoshimura-Miyakoshi M, Sato Y et al (2015) A possible involvement of endoplasmic reticulum stress in biliary epithelial autophagy and senescence in primary biliary cirrhosis. J Gastroenterol 50:984–995

    Article  PubMed  Google Scholar 

  74. Manley S, Ni HM, Kong B et al (2014) Suppression of autophagic flux by bile acids in hepatocytes. Toxicol Sci 137:478–490

    Article  CAS  PubMed  Google Scholar 

  75. Gao L, Lv G, Guo X et al (2014) Activation of autophagy protects against cholestasis-induced hepatic injury. Cell Biosci 4:47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Wagner M, Zollner G, Trauner M (2009) New molecular insights into the mechanisms of cholestasis. J Hepatol 51:565–580

    Article  CAS  PubMed  Google Scholar 

  77. Zollner G, Trauner M (2006) Molecular mechanisms of cholestasis. Wien Med Wochenschr 156:380–385

    Article  PubMed  Google Scholar 

  78. Halilbasic E, Baghdasaryan A, Trauner M (2013) Nuclear receptors as drug targets in cholestatic liver diseases. Clin Liver Dis 17:161–189

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cuperus FJ, Claudel T, Gautherot J et al (2014) The role of canalicular ABC transporters in cholestasis. Drug Metab Dispos 42:546–560

    Article  CAS  PubMed  Google Scholar 

  80. Li T, Apte U (2015) Bile acid metabolism and signaling in cholestasis, inflammation, and cancer. Adv Pharmacol 74:263–302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Vartak N, Damle-Vartak A, Richter B et al (2016) Cholestasis-induced adaptive remodeling of interlobular bile ducts. Hepatology 63:951–964

    Article  CAS  PubMed  Google Scholar 

  82. Jansen PL, Ghallab A, Vartak N et al (2017) The ascending pathophysiology of cholestatic liver disease. Hepatology 65:722–738

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants of the European Research Council, the Center for Alternatives to Animal Testing at Johns Hopkins University Baltimore-USA, the Fund for Scientific Research-Flanders, and the University Hospital of the Willy Gepts Fonds UZ-Brussels.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Vinken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gijbels, E., Vinken, M. (2019). Mechanisms of Drug-Induced Cholestasis. In: Vinken, M. (eds) Experimental Cholestasis Research. Methods in Molecular Biology, vol 1981. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9420-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9420-5_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9419-9

  • Online ISBN: 978-1-4939-9420-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics