Skip to main content

Traveling Wave Ion Mobility Mass Spectrometry: Metabolomics Applications

  • Protocol
  • First Online:
High-Throughput Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1978))

Abstract

Ion mobility (IM) spectrometry can separate gas-phase ions according to their charge, molecular shape, and size. In recent years, several IM technologies have been integrated with mass spectrometry (MS) and launched as commercially available instrumentation for metabolomics analysis. The addition of IM to MS-based metabolomics workflows provides an additional degree of separation to chromatography and MS resolving power, improving peak capacity and signal-to-noise ratio. Moreover, it makes possible to experimentally derive collision cross section (CCS), which can be used as an additional coordinate for metabolite identification, together with accurate mass and fragmentation information. The addition of CCS to current metabolome database would allow to filter and score molecules based on their CCS values, adding more confidence in the identification process during metabolomics experiments.

In this chapter, we present procedures for the integration of travelling-wave (TW)-IM into traditional MS-based metabolomics workflows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rainville PD, Wilson ID, Nicholson JK et al (2017) Ion mobility spectrometry combined with ultra performance liquid chromatography/mass spectrometry for metabolic phenotyping of urine: effects of column length, gradient duration and ion mobility spectrometry on metabolite detection. Anal Chim Acta 982:1–8

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Kanu AB, Dwivedi P, Tam M et al (2008) Ion mobility-mass spectrometry. J Mass Spectrom 43:1–22

    PubMed  CAS  Google Scholar 

  3. Lapthorn C, Pullen F, Chowdhry BZ (2013) Ion mobility spectrometry-mass spectrometry (IMS-MS) of small molecules: separating and assigning structures to ions. Mass Spectrom Rev 32:43–71

    PubMed  CAS  Google Scholar 

  4. May JC, McLean JA (2015) Ion mobility-mass spectrometry: time-dispersive instrumentation. Anal Chem 87:1422–1436

    PubMed  CAS  Google Scholar 

  5. Dwivedi P, Schultz AJ, Hill HH Jr (2010) Metabolic profiling of human blood by high-resolution ion mobility mass spectrometry (IM-MS). Int J Mass Spectrom 298:78–90

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Dwivedi P, Puzon G, Tam M et al (2010) Metabolic profiling of Escherichia coli by ion mobility-mass spectrometry with MALDI ion source. J Mass Spectrom 45:1383–1393

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Shah V, Castro-Perez JM, McLaren DG et al (2013) Enhanced data-independent analysis of lipids using ion mobility-TOFMS E to unravel quantitative and qualitative information in human plasma. Rapid Commun Mass Spectrom 27:2195–2200

    PubMed  CAS  Google Scholar 

  8. Hart PJ, Francese S, Claude E et al (2011) MALDI-MS imaging of lipids in ex vivo human skin. Anal Bioanal Chem 401:115–125

    PubMed  CAS  Google Scholar 

  9. Ahonen L, Fasciotti M, af Gennäs GB et al (2013) Separation of steroid isomers by ion mobility mass spectrometry. J Chromatogr A 1310:133–137

    PubMed  CAS  Google Scholar 

  10. Malkar A, Devenport NA, Martin HJ et al (2013) Metabolic profiling of human saliva before and after induced physiological stress by ultra-high performance liquid chromatography-ion mobility-mass spectrometry. Metabolomics 9:1192–1201

    CAS  Google Scholar 

  11. Kaplan K, Dwivedi P, Davidson S et al (2009) Monitoring dynamic changes in lymph metabolome of fasting and fed rats by electrospray ionization-ion mobility mass spectrometry (ESI-IMMS). Anal Chem 81:7944–7953

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Zhang X, Romm M, Zheng X et al (2016) SPE-IMS-MS: an automated platform for sub-sixty second surveillance of endogenous metabolites and xenobiotics in biofluids. Clin Mass Spectrom 2:1–10

    PubMed  PubMed Central  Google Scholar 

  13. Stow SM, Causon TJ, Zheng X et al (2017) An interlaboratory evaluation of drift tube ion mobility-mass spectrometry collision cross section measurements. Anal Chem 89:9048–9055

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Zheng X, Aly NA, Zhou Y et al (2017) A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem Sci 8:7724–7736

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Zhou Z, Tu J, Zhu ZJ (2018) Advancing the large-scale CCS database for metabolomics and lipidomics at the machine-learning era. Curr Opin Chem Biol 42:34–41

    PubMed  CAS  Google Scholar 

  16. Zhou Z, Tu J, Xiong X et al (2017) LipidCCS: prediction of collision cross-section values for lipids with high precision to support ion mobility-mass spectrometry-based lipidomics. Anal Chem 89:9559–9566

    PubMed  CAS  Google Scholar 

  17. Righetti L, Bergmann A, Galaverna G et al (2018) Ion mobility-derived collision cross section database: application to mycotoxin analysis. Anal Chim Acta 1014:50–57

    PubMed  CAS  Google Scholar 

  18. Pacini T, Fu W, Gudmundsson S et al (2015) Multidimensional analytical approach based on UHPLC-UV-ion mobility-MS for the screening of natural pigments. Anal Chem 87:2593–2599

    PubMed  CAS  Google Scholar 

  19. Paglia G, Angel P, Williams JP et al (2015) Ion mobility-derived collision cross section as an additional measure for lipid fingerprinting and identification. Anal Chem 87:1137–1144

    PubMed  CAS  Google Scholar 

  20. Paglia G, Williams JP, Menikarachchi LC et al (2014) Ion mobility-derived collision cross-sections to support metabolomics applications. Anal Chem 86:3985–3993

    PubMed  PubMed Central  CAS  Google Scholar 

  21. May JC, Morris CB, McLean JA (2017) Ion mobility collision cross section compendium. Anal Chem 89:1032–1044

    PubMed  CAS  Google Scholar 

  22. Bush MF, Campuzano IDG, Robinson CV (2012) Ion mobility mass spectrometry of peptide ions: effects of drift gas and calibration strategies. Anal Chem 84:7124–7130

    PubMed  CAS  Google Scholar 

  23. Hines KM, May JC, McLean JA et al (2016) Evaluation of collision cross section calibrants for structural analysis of lipids by traveling wave ion mobility-mass spectrometry. Anal Chem 88:7329–7336

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Paglia, G., Astarita, G. (2019). Traveling Wave Ion Mobility Mass Spectrometry: Metabolomics Applications. In: D'Alessandro, A. (eds) High-Throughput Metabolomics. Methods in Molecular Biology, vol 1978. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9236-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9236-2_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9235-5

  • Online ISBN: 978-1-4939-9236-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics