Skip to main content

Blood Biomarkers in Sports Medicine and Performance and the Future of Metabolomics

  • Protocol
  • First Online:
High-Throughput Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1978))

Abstract

The field of sports medicine and performance has undergone an important transformation in the past years where the scientific approach is becoming increasingly more important for teams and athletes. Physical and physiological fitness, nutrition, fatigue and recovery, as well as injury prevention are key elements of the scientific monitoring of athletes nowadays. Many different methods are used nowadays as part of the scientific monitoring and testing of the competitive athlete. Among them, physiological and metabolic testing, biomechanical and movement assessments, GPS-based tracking systems, heart rate monitors, power meters, and training software are an integrative part of the scientific monitor program of many teams and athletes.

Blood biomarkers through traditional blood analysis have been used for over three decades (mainly in Europe) to monitor athletic performance. In the same manner that different cells in the body respond to the stress of an infection or a disease, cells in athletes respond to the stress of competition and training. Nowadays, the area of blood biomarkers is an emerging field in the US offering important level of possibilities to monitor athletes. The field of metabolomics can offer a significantly higher level of blood biomarkers for sports medicine and performance monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Billat LV (1996) Use of blood lactate measurements for prediction of exercise performance and for control of training. Recommendations for long-distance running. Sports Med 22:157–175

    Article  CAS  PubMed  Google Scholar 

  2. Jacobs I, Sjodin B, Schele R (1983) A Single Blood Lactate Determination as an Indicator of Cycle Ergometer Endurance Capacity. Eur J Appl Physiol Occup Physiol 50:355–364

    Article  CAS  PubMed  Google Scholar 

  3. San Millan I, Gonzalez-Haro C, Sagasti M (2009) Physiological differences between road cyclists of different categories. A new approach. Med Sci Sports Exerc 41:48

    Google Scholar 

  4. Jacobs I (1986) Blood lactate. Implications for training and sports performance. Sports Med 3:10–25

    Article  CAS  PubMed  Google Scholar 

  5. Brooks GA (2000) Intra- and extra-cellular lactate shuttles. Med Sci Sports Exerc 32:790–799

    Article  CAS  PubMed  Google Scholar 

  6. Brooks GA (2002) Lactate shuttles in nature. Biochem Soc Trans 30:258–264

    Article  CAS  PubMed  Google Scholar 

  7. Brooks GA (2009) Cell-cell and intracellular lactate shuttles. J Physiol 587:5591–5600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. San-Millan I, Brooks GA (2017) Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect. Carcinogenesis 38:119–133

    CAS  PubMed  Google Scholar 

  9. Brooks GA, Dubouchaud H, Brown M, Sicurello JP, Butz CE (1999) Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle. Proc Natl Acad Sci U S A 96:1129–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gollnick PD, Hodgson DR (1986) The identification of fiber types in skeletal muscle: a continual dilemma. Exerc Sport Sci Rev 14:81–104

    Article  CAS  PubMed  Google Scholar 

  11. Heigenhauser GJ, Parolin ML (1999) Role of pyruvate dehydrogenase in lactate production in exercising human skeletal muscle. Adv Exp Med Biol 474:205–218

    Article  CAS  PubMed  Google Scholar 

  12. Hashimoto T, Hussien R, Cho HS, Kaufer D, Brooks GA (2008) Evidence for the mitochondrial lactate oxidation complex in rat neurons: demonstration of an essential component of brain lactate shuttles. PLoS One 3:e2915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Donaldson SK, Hermansen L, Bolles L (1978) Differential, direct effects of H+ on Ca2+ −activated force of skinned fibers from the soleus, cardiac and adductor magnus muscles of rabbits. Pflugers Arch 376:55–65

    Article  CAS  PubMed  Google Scholar 

  14. Sahlin K (1978) Intracellular pH and energy metabolism in skeletal muscle of man. With special reference to exercise. Acta Physiol Scand Suppl 455:1–56

    CAS  PubMed  Google Scholar 

  15. Sahlin K, Harris RC, Nylind B, Hultman E (1976) Lactate content and pH in muscle obtained after dynamic exercise. Pflugers Arch 367:143–149

    Article  CAS  PubMed  Google Scholar 

  16. Fitts R (2004) Mechanisms of muscular fatigue. Karger, Basel

    Google Scholar 

  17. Fabiato A, Fabiato F (1978) Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. J Physiol 276:233–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miyake S, Ishii Y, Watari T, Huang Z, Tsuchiya T (2003) The influences of L(+)-lactate and pH on contractile performance in rabbit glycerinated skeletal muscle. Jpn J Physiol 53:401–409

    Article  CAS  PubMed  Google Scholar 

  19. Kristensen M, Albertsen J, Rentsch M, Juel C (2005) Lactate and force production in skeletal muscle. J Physiol 562:521–526

    Article  CAS  PubMed  Google Scholar 

  20. Messonnier L, Kristensen M, Juel C, Denis C (2007) Importance of pH regulation and lactate/H+ transport capacity for work production during supramaximal exercise in humans. J Appl Physiol (1985) 102:1936–1944

    Article  CAS  Google Scholar 

  21. San-Millan I, Brooks GA (2018) Assessment of metabolic flexibility by means of measuring blood lactate, fat, and carbohydrate oxidation responses to exercise in professional endurance athletes and less-fit individuals. Sports Med 48:467–479

    Article  PubMed  Google Scholar 

  22. Cai TQ, Ren N, Jin L, Cheng K, Kash S, Chen R, Wright SD, Taggart AK, Waters MG (2008) Role of GPR81 in lactate-mediated reduction of adipose lipolysis. Biochem Biophys Res Commun 377:987–991

    Article  CAS  PubMed  Google Scholar 

  23. Brooks GA (1991) Current concepts in lactate exchange. Med Sci Sports Exerc 23:895–906

    Article  CAS  PubMed  Google Scholar 

  24. Brooks GA (2018) The science and translation of lactate shuttle theory. Cell Metab 27:757–785

    Article  CAS  PubMed  Google Scholar 

  25. Hoppeler H, Luthi P, Claassen H, Weibel ER, Howald H (1973) The ultrastructure of the normal human skeletal muscle. A morphometric analysis on untrained men, women and well-trained orienteers. Pflugers Arch 344:217–232

    Article  CAS  PubMed  Google Scholar 

  26. Jacobs RA, Lundby C (2013) Mitochondria express enhanced quality as well as quantity in association with aerobic fitness across recreationally active individuals up to elite athletes. J Appl Physiol (1985) 114:344–350

    Article  CAS  Google Scholar 

  27. Jacobs RA, Rasmussen P, Siebenmann C, Diaz V, Gassmann M, Pesta D, Gnaiger E, Nordsborg NB, Robach P, Lundby C (2011) Determinants of time trial performance and maximal incremental exercise in highly trained endurance athletes. J Appl Physiol (1985) 111:1422–1430

    Article  CAS  Google Scholar 

  28. Seto JT, Quinlan KG, Lek M, Zheng XF, Garton F, MacArthur DG, Hogarth MW, Houweling PJ, Gregorevic P, Turner N, Cooney GJ, Yang N, North KN (2013) ACTN3 genotype influences muscle performance through the regulation of calcineurin signaling. J Clin Invest 123:4255–4263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Warburg OA, Minami S (1923) Versuche an Überlebendem Carcinom-gewebe. Klin Wochenschr 2:776–777

    Article  Google Scholar 

  30. Coggan AR, Coyle EF (1987) Reversal of fatigue during prolonged exercise by carbohydrate infusion or ingestion. J Appl Physiol (1985) 63:2388–2395

    Article  CAS  Google Scholar 

  31. Coyle EF, Coggan AR, Hemmert MK, Ivy JL (1986) Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol (1985) 61:165–172

    Article  CAS  Google Scholar 

  32. Coyle EF, Hagberg JM, Hurley BF, Martin WH, Ehsani AA, Holloszy JO (1983) Carbohydrate feeding during prolonged strenuous exercise can delay fatigue. J Appl Physiol Respir Environ Exerc Physiol 55:230–235

    CAS  PubMed  Google Scholar 

  33. Hermansen L, Hultman E, Saltin B (1967) Muscle glycogen during prolonged severe exercise. Acta Physiol Scand 71:129–139

    Article  CAS  PubMed  Google Scholar 

  34. Maughan RJ, Greenhaff PL, Leiper JB, Ball D, Lambert CP, Gleeson M (1997) Diet composition and the performance of high-intensity exercise. J Sports Sci 15:265–275

    Article  CAS  PubMed  Google Scholar 

  35. McConell G, Snow RJ, Proietto J, Hargreaves M (1999) Muscle metabolism during prolonged exercise in humans: influence of carbohydrate availability. J Appl Physiol (1985) 87:1083–1086

    Article  CAS  Google Scholar 

  36. Ren JM, Broberg S, Sahlin K, Hultman E (1990) Influence of reduced glycogen level on glycogenolysis during short-term stimulation in man. Acta Physiol Scand 139:467–474

    Article  CAS  PubMed  Google Scholar 

  37. Lemon PW, Mullin JP (1980) Effect of initial muscle glycogen levels on protein catabolism during exercise. J Appl Physiol Respir Environ Exerc Physiol 48:624–629

    CAS  PubMed  Google Scholar 

  38. Tarnopolsky MA, Atkinson SA, Phillips SM, MacDougall JD (1995) Carbohydrate loading and metabolism during exercise in men and women. J Appl Physiol (1985) 78:1360–1368

    Article  CAS  Google Scholar 

  39. Sherman WM (1995) Metabolism of sugars and physical performance. Am J Clin Nutr 62:228S–241S

    Article  CAS  PubMed  Google Scholar 

  40. Sherman WM, Wimer GS (1991) Insufficient dietary carbohydrate during training: does it impair athletic performance? Int J Sport Nutr 1:28–44

    Article  CAS  PubMed  Google Scholar 

  41. Snyder AC, Kuipers H, Cheng B, Servais R, Fransen E (1995) Overtraining following intensified training with normal muscle glycogen. Med Sci Sports Exerc 27:1063–1070

    Article  CAS  PubMed  Google Scholar 

  42. Costill DL, Pascoe DD, Fink WJ, Robergs RA, Barr SI, Pearson D (1990) Impaired muscle glycogen resynthesis after eccentric exercise. J Appl Physiol (1985) 69:46–50

    Article  CAS  Google Scholar 

  43. O’reilly KP, Warhol MJ, Fielding RA, Frontera WR, Meredith CN, Evans WJ (1987) Eccentric exercise-induced muscle damage impairs muscle glycogen repletion. J Appl Physiol (1985) 63:252–256

    Article  Google Scholar 

  44. Meyers AW, Whelan JP (1988) Systematic model for understanding psychosocial influences in overtraining. In: Kreider RB, Fry AC, O’Toole ML (eds) Overtraining in sport. Human Kinetics, Champaign, IL

    Google Scholar 

  45. Alberti KG, Johnston DG (1977) Cortisol and catabolism: a new perspective. Clin Sci Mol Med 52:333–336

    CAS  PubMed  Google Scholar 

  46. Borges GF, Rama LM, Pedreiro S, Rosado F, Alves F, Santos AM, Paiva A, Teixeira AM (2012) Haematological changes in elite kayakers during a training season. Appl Physiol Nutr Metab 37:1140–1146

    Article  CAS  PubMed  Google Scholar 

  47. Celsing F, Svedenhag J, Pihlstedt P, Ekblom B (1987) Effects of anaemia and stepwise-induced polycythaemia on maximal aerobic power in individuals with high and low haemoglobin concentrations. Acta Physiol Scand 129:47–54

    Article  CAS  PubMed  Google Scholar 

  48. Dressendorfer RH, Wade CE, Amsterdam EA (1981) Development of pseudoanemia in marathon runners during a 20-day road race. JAMA 246:1215–1218

    Article  CAS  PubMed  Google Scholar 

  49. Rushall BS, Busch JD (1980) Hematological responses to training in elite swimmers. Can J Appl Sport Sci 5:164–169

    CAS  PubMed  Google Scholar 

  50. Woodson RD (1984) Hemoglobin concentration and exercise capacity. Am Rev Respir Dis 129:S72–S75

    Article  CAS  PubMed  Google Scholar 

  51. Sackmann E (1995) Biological membranes architecture and function. Elsevier Science, Amsterdam

    Book  Google Scholar 

  52. Delaby C, Deybach JC, Beaumont C (2007) Hepcidin and iron metabolism. Rev Med Interne 28:510–512

    Article  CAS  PubMed  Google Scholar 

  53. Eleftheriadis T, Liakopoulos V, Antoniadi G, Kartsios C, Stefanidis I (2009) The role of hepcidin in iron homeostasis and anemia in hemodialysis patients. Semin Dial 22:70–77

    Article  PubMed  Google Scholar 

  54. Auersperger I, Knap B, Jerin A, Blagus R, Lainscak M, Skitek M, Skof B (2012) The effects of 8 weeks of endurance running on hepcidin concentrations, inflammatory parameters, and iron status in female runners. Int J Sport Nutr Exerc Metab 22:55–63

    Article  CAS  PubMed  Google Scholar 

  55. Kong WN, Gao G, Chang YZ (2014) Hepcidin and sports anemia. Cell Biosci 4:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Liu YQ, Chang YZ, Zhao B, Wang HT, Duan XL (2011) Does hepatic hepcidin play an important role in exercise-associated anemia in rats? Int J Sport Nutr Exerc Metab 21:19–26

    Article  PubMed  Google Scholar 

  57. Peeling P (2010) Exercise as a mediator of hepcidin activity in athletes. Eur J Appl Physiol 110:877–883

    Article  CAS  PubMed  Google Scholar 

  58. Peeling P, Dawson B, Goodman C, Landers G, Wiegerinck ET, Swinkels DW, Trinder D (2009) Effects of exercise on hepcidin response and iron metabolism during recovery. Int J Sport Nutr Exerc Metab 19:583–597

    Article  CAS  PubMed  Google Scholar 

  59. Brancaccio P, Maffulli N, Limongelli FM (2007) Creatine kinase monitoring in sport medicine. Br Med Bull 81-82:209–230

    Article  PubMed  CAS  Google Scholar 

  60. Clarkson PM, Hubal MJ (2002) Exercise-induced muscle damage in humans. Am J Phys Med Rehabil 81:S52–S69

    Article  PubMed  Google Scholar 

  61. Coratella G, Chemello A, Schena F (2016) Muscle damage and repeated bout effect induced by enhanced eccentric squats. J Sports Med Phys Fitness 56:1540–1546

    PubMed  Google Scholar 

  62. Nosaka K, Clarkson PM (1996) Variability in serum creatine kinase response after eccentric exercise of the elbow flexors. Int J Sports Med 17:120–127

    Article  CAS  PubMed  Google Scholar 

  63. Son HJ, Lee YH, Chae JH, Kim CK (2015) Creatine kinase isoenzyme activity during and after an ultra-distance (200 km) run. Biol Sport 32:357–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Clarkson PM, Ebbeling C (1988) Investigation of serum creatine kinase variability after muscle-damaging exercise. Clin Sci (Lond) 75:257–261

    Article  CAS  Google Scholar 

  65. Sorichter S, Koller A, Haid C, Wicke K, Judmaier W, Werner P, Raas E (1995) Light concentric exercise and heavy eccentric muscle loading: effects on CK, MRI and markers of inflammation. Int J Sports Med 16:288–292

    Article  CAS  PubMed  Google Scholar 

  66. Wolf PL, Lott JA, Nitti GJ, Bookstein R (1987) Changes in serum enzymes, lactate, and haptoglobin following acute physical stress in international-class athletes. Clin Biochem 20:73–77

    Article  CAS  PubMed  Google Scholar 

  67. Sorichter S, Mair J, Koller A, Gebert W, Rama D, Calzolari C, Artner-Dworzak E, Puschendorf B (1997) Skeletal troponin I as a marker of exercise-induced muscle damage. J Appl Physiol (1985) 83:1076–1082

    Article  CAS  Google Scholar 

  68. Moldoveanu AI, Shephard RJ, Shek PN (2001) The cytokine response to physical activity and training. Sports Med 31:115–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88:1243–1276

    Article  CAS  PubMed  Google Scholar 

  70. Kraemer WJ, Ratamess NA (2005) Hormonal responses and adaptations to resistance exercise and training. Sports Med 35:339–361

    Article  PubMed  Google Scholar 

  71. Budgett R (1990) Overtraining syndrome. Br J Sports Med 24:231–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hill EE, Zack E, Battaglini C, Viru M, Viru A, Hackney AC (2008) Exercise and circulating cortisol levels: the intensity threshold effect. J Endocrinol Investig 31:587–591

    Article  CAS  Google Scholar 

  73. Urhausen A, Kullmer T, Kindermann W (1987) A 7-week follow-up study of the behaviour of testosterone and cortisol during the competition period in rowers. Eur J Appl Physiol Occup Physiol 56:528–533

    Article  CAS  PubMed  Google Scholar 

  74. Brooks K, Carter J (2013) Overtraining, exercise, and adrenal insufficiency. J Nov Physiother 3(125)

    Google Scholar 

  75. Lehmann M, Gastmann U, Petersen KG, Bachl N, Seidel A, Khalaf AN, Fischer S, Keul J (1992) Training-overtraining: performance, and hormone levels, after a defined increase in training volume versus intensity in experienced middle- and long-distance runners. Br J Sports Med 26:233–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Urhausen A, Gabriel H, Kindermann W (1995) Blood hormones as markers of training stress and overtraining. Sports Med 20:251–276

    Article  CAS  PubMed  Google Scholar 

  77. Simsch C, Lormes W, Petersen KG, Baur S, Liu Y, Hackney AC, Lehmann M, Steinacker JM (2002) Training intensity influences leptin and thyroid hormones in highly trained rowers. Int J Sports Med 23:422–427

    Article  CAS  PubMed  Google Scholar 

  78. Hackney AC, Koltun KJ (2012) The immune system and overtraining in athletes: clinical implications. Acta Clin Croat 51:633–641

    PubMed  Google Scholar 

  79. Nieman DC (2000) Special feature for the Olympics: effects of exercise on the immune system: exercise effects on systemic immunity. Immunol Cell Biol 78:496–501

    Article  CAS  PubMed  Google Scholar 

  80. Mackinnon LT (2000) Special feature for the Olympics: effects of exercise on the immune system: overtraining effects on immunity and performance in athletes. Immunol Cell Biol 78:502–509

    Article  CAS  PubMed  Google Scholar 

  81. Fareau GG, Vassilopoulou-Sellin R (2007) Hypercortisolemia and infection. Infect Dis Clin North Am 21:639–657, viii

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iñigo San-Millán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

San-Millán, I. (2019). Blood Biomarkers in Sports Medicine and Performance and the Future of Metabolomics. In: D'Alessandro, A. (eds) High-Throughput Metabolomics. Methods in Molecular Biology, vol 1978. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9236-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9236-2_26

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9235-5

  • Online ISBN: 978-1-4939-9236-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics