Skip to main content

Quantitative NMR-Based Metabolomics on Tissue Biomarkers and Its Translation into In Vivo Magnetic Resonance Spectroscopy

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1978))

Abstract

Nuclear magnetic resonance (NMR) spectroscopy is an established analytical platform for analyzing metabolic profiles of cells, tissues, and body fluids. There are several advantages in introducing an NMR-based study design into metabolomics studies, including a fast and comprehensive detection, characterization, and quantification of dozens of endogenous metabolites in a single NMR spectrum. Quantitative proton 1H-NMR is the most useful NMR-based platform for metabolomics. The frozen tissues can be analyzed noninvasively using a high-resolution magic angle spinning (HR-MAS) 1H-NMR spectroscopy; or several extraction techniques can be applied to detect additional metabolites using a conventional liquid-based NMR technique. In this chapter, we report on tissue collection, handling, extraction methods, and 1H-NMR acquisition protocols developed in the past decades for a precise and quantitative NMR-metabolomics approach. The NMR acquisition protocols (both HR-MAS and conventional 1H-NMR spectroscopy) and spectral analysis steps are also presented. Since NMR can be applied “in vivo” using horizontal bore MRI scanners, several in vivo sequences for localized 1H-MRS (magnetic resonance spectroscopy) are presented which can be directly applied for noninvasive detection of brain metabolites.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Nevedomskaya E, Pacchiarotta T, Artemov A, Meissner A, van Nieuwkoop C, van Dissel JT et al (2012) (1)H NMR-based metabolic profiling of urinary tract infection: combining multiple statistical models and clinical data. Metabolomics 8(6):1227–1235

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C et al (2013) The human urine metabolome. PLoS One 8(9):e73076

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Schicho R, Shaykhutdinov R, Ngo J, Nazyrova A, Schneider C, Panaccione R et al (2012) Quantitative metabolomic profiling of serum, plasma, and urine by (1)H NMR spectroscopy discriminates between patients with inflammatory bowel disease and healthy individuals. J Proteome Res 11:3344

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bogren LK, Murphy CJ, Johnston EL, Sinha N, Serkova NJ, Drew KL (2014) 1H-NMR metabolomic biomarkers of poor outcome after hemorrhagic shock are absent in hibernators. PLoS One 9(9):e107493

    PubMed  PubMed Central  Google Scholar 

  5. Serkova NJ, Brown MS (2012) Quantitative analysis in magnetic resonance spectroscopy: from metabolic profiling to in vivo biomarkers. Bioanalysis 4(3):321–341

    CAS  PubMed  Google Scholar 

  6. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y et al (2013) HMDB 3.0—The Human Metabolome Database in 2013. Nucleic Acids Res 41(Database issue):D801–D807

    CAS  PubMed  Google Scholar 

  7. El-Sayed S, Bezabeh T, Odlum O, Patel R, Ahing S, MacDonald K et al (2002) An ex vivo study exploring the diagnostic potential of 1H magnetic resonance spectroscopy in squamous cell carcinoma of the head and neck region. Head Neck 24(8):766–772

    PubMed  Google Scholar 

  8. Tzika AA, Cheng LL, Goumnerova L, Madsen JR, Zurakowski D, Astrakas LG et al (2002) Biochemical characterization of pediatric brain tumors by using in vivo and ex vivo magnetic resonance spectroscopy. J Neurosurg 96(6):1023–1031

    CAS  PubMed  Google Scholar 

  9. Kebir S, Rauschenbach L, Galldiks N, Schlaak M, Hattingen E, Landsberg J et al (2016) Dynamic O-(2-[18F]fluoroethyl)-L-tyrosine PET imaging for the detection of checkpoint inhibitor-related pseudoprogression in melanoma brain metastases. Neuro-Oncology 18(10):1462–1464

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Serkova N, Bendrick-Peart J, Alexander B, Tissot van Patot MC (2003) Metabolite concentrations in human term placentae and their changes due to delayed collection after delivery. Placenta 24(2–3):227–235

    CAS  PubMed  Google Scholar 

  11. Serkova NJ, Glunde K (2009) Metabolomics of cancer. Methods Mol Biol 520:273–295

    CAS  PubMed  Google Scholar 

  12. Rudolph MC, Wellberg EA, Lewis AS, Terrell KL, Merz AL, Maluf NK et al (2014) Thyroid hormone responsive protein Spot14 enhances catalysis of fatty acid synthase in lactating mammary epithelium. J Lipid Res 55(6):1052–1065

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Serkova NJ, Rose JC, Epperson LE, Carey HV, Martin SL (2007) Quantitative analysis of liver metabolites in three stages of the circannual hibernation cycle in 13-lined ground squirrels by NMR. Physiol Genomics 31(1):15–24

    CAS  PubMed  Google Scholar 

  14. Serkova N, Klawitter J, Niemann CU (2003) Organ-specific response to inhibition of mitochondrial metabolism by cyclosporine in the rat. Transpl Int 16(10):748–755

    CAS  PubMed  Google Scholar 

  15. Niemann CU, Saeed M, Akbari H, Jacobsen W, Benet LZ, Christians U et al (2002) Close association between the reduction in myocardial energy metabolism and infarct size: dose-response assessment of cyclosporine. J Pharmacol Exp Ther 302(3):1123–1128

    CAS  PubMed  Google Scholar 

  16. Serkova N, Fuller TF, Klawitter J, Freise CE, Niemann CU (2005) H-NMR-based metabolic signatures of mild and severe ischemia/reperfusion injury in rat kidney transplants. Kidney Int 67(3):1142–1151

    CAS  PubMed  Google Scholar 

  17. Niemann CU, Choi S, Behrends M, Hirose R, Noh J, Coatney JL et al (2006) Mild hypothermia protects obese rats from fulminant hepatic necrosis induced by ischemia-reperfusion. Surgery 140(3):404–412

    PubMed  Google Scholar 

  18. Serkova NJ, Jackman M, Brown JL, Liu T, Hirose R, Roberts JP et al (2006) Metabolic profiling of livers and blood from obese Zucker rats. J Hepatol 44(5):956–962

    CAS  PubMed  Google Scholar 

  19. Raina K, Serkova NJ, Agarwal R (2009) Silibinin feeding alters the metabolic profile in TRAMP prostatic tumors: 1H-NMRS-based metabolomics study. Cancer Res 69(9):3731–3735

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Klawitter J, Gottschalk S, Hainz C, Leibfritz D, Christians U, Serkova NJ (2010) Immunosuppressant neurotoxicity in rat brain models: oxidative stress and cellular metabolism. Chem Res Toxicol 23(3):608–619

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gottschalk S, Cummins CL, Leibfritz D, Christians U, Benet LZ, Serkova NJ (2011) Age and sex differences in the effects of the immunosuppressants cyclosporine, sirolimus and everolimus on rat brain metabolism. Neurotoxicology 32(1):50–57

    CAS  PubMed  Google Scholar 

  22. Serkova NJ, Van Rheen Z, Tobias M, Pitzer JE, Wilkinson JE, Stringer KA (2008) Utility of magnetic resonance imaging and nuclear magnetic resonance-based metabolomics for quantification of inflammatory lung injury. Am J Physiol Lung Cell Mol Physiol 295(1):L152–L161

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Raina K, Ravichandran K, Rajamanickam S, Huber KM, Serkova NJ, Agarwal R (2013) Inositol hexaphosphate inhibits tumor growth, vascularity, and metabolism in TRAMP mice: a multiparametric magnetic resonance study. Cancer Prev Res 6(1):40–50

    CAS  Google Scholar 

  24. Cheng LL, Wu C, Smith MR, Gonzalez RG (2001) Non-destructive quantitation of spermine in human prostate tissue samples using HRMAS 1H NMR spectroscopy at 9.4 T. FEBS Lett 494(1–2):112–116

    CAS  PubMed  Google Scholar 

  25. Martinez-Granados B, Monleon D, Martinez-Bisbal MC, Rodrigo JM, del Olmo J, Lluch P et al (2006) Metabolite identification in human liver needle biopsies by high-resolution magic angle spinning 1H NMR spectroscopy. NMR Biomed 19(1):90–100

    CAS  PubMed  Google Scholar 

  26. Tessem MB, Swanson MG, Keshari KR, Albers MJ, Joun D, Tabatabai ZL et al (2008) Evaluation of lactate and alanine as metabolic biomarkers of prostate cancer using 1H HR-MAS spectroscopy of biopsy tissues. Magn Reson Med 60(3):510–516

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Chan EC, Koh PK, Mal M, Cheah PY, Eu KW, Backshall A et al (2009) Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J Proteome Res 8(1):352–361

    CAS  PubMed  Google Scholar 

  28. Li M, Song Y, Cho N, Chang JM, Koo HR, Yi A et al (2011) An HR-MAS MR metabolomics study on breast tissues obtained with core needle biopsy. PLoS One 6(10):e25563

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Meisamy S, Bolan PJ, Baker EH, Pollema MG, Le CT, Kelcz F et al (2005) Adding in vivo quantitative 1H MR spectroscopy to improve diagnostic accuracy of breast MR imaging: preliminary results of observer performance study at 4.0 T. Radiology 236(2):465–475

    PubMed  Google Scholar 

  30. Shin HJ, Baek HM, Cha JH, Kim HH (2012) Evaluation of breast cancer using proton MR spectroscopy: total choline peak integral and signal-to-noise ratio as prognostic indicators. AJR Am J Roentgenol 198(5):W488–W497

    PubMed  Google Scholar 

  31. Rudolph MC, McManaman JL, Phang T, Russell T, Kominsky DJ, Serkova NJ et al (2007) Metabolic regulation in the lactating mammary gland: a lipid synthesizing machine. Physiol Genomics 28(3):323–336

    CAS  PubMed  Google Scholar 

  32. Serkova NJ, Gamito EJ, Jones RH, O’Donnell C, Brown JL, Green S et al (2008) The metabolites citrate, myo-inositol, and spermine are potential age-independent markers of prostate cancer in human expressed prostatic secretions. Prostate 68(6):620–628

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the NIH grants S10 OD023485, R01 CA140368, R01 CA195708, P30 CA046934, and UL1 TR001082, the University of Colorado Cancer Center (UCCC), and the Colorado Clinical Translational Sciences Institute (CCTSI) Animal Imaging Shared Resource (AISR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie J. Serkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Serkova, N.J., Davis, D.M., Steiner, J., Agarwal, R. (2019). Quantitative NMR-Based Metabolomics on Tissue Biomarkers and Its Translation into In Vivo Magnetic Resonance Spectroscopy. In: D'Alessandro, A. (eds) High-Throughput Metabolomics. Methods in Molecular Biology, vol 1978. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9236-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9236-2_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9235-5

  • Online ISBN: 978-1-4939-9236-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics