Skip to main content

Temporal Metabolite, Ion, and Enzyme Activity Profiling Using Fluorescence Microscopy and Genetically Encoded Biosensors

  • Protocol
  • First Online:
High-Throughput Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1978))

Abstract

Living cells employ complex and highly dynamic signaling networks and transcriptional circuits to maintain homeostasis and respond appropriately to constantly changing environments. These networks enable cells to maintain tight control on intracellular concentrations of ions, metabolites, proteins, and other biomolecules and ensure a careful balance between a cell’s energetic needs and catabolic processes required for growth. Establishing molecular mechanisms of genetic and pharmacological perturbations remains challenging, due to the interconnected nature of these networks and the extreme sensitivity of cellular systems to their external environment. Live cell imaging with genetically encoded fluorescent biosensors provides a powerful new modality for nondestructive spatiotemporal tracking of ions, small molecules, enzymatic activities, and molecular interactions in living systems, from cells, tissues, and even living organisms. By deploying large panels of cell lines, each with distinct biosensors, many critical biochemical pathways can be monitored in a highly parallel and high-throughput fashion to identify pharmacological vulnerabilities and combination therapies unique to a given cell type or genetic background. Here we describe the experimental and analytical methods required to conduct multiplexed parallel fluorescence microscopy experiments on live cells expressing stable transgenic synthetic protein biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Terai T, Nagano T (2013) Small-molecule fluorophores and fluorescent probes for bioimaging. Pflugers Arch 465:347–359

    CAS  PubMed  Google Scholar 

  2. Mohsin M, Ahmad A, Iqbal M (2015) FRET-based genetically-encoded sensors for quantitative monitoring of metabolites. Biotechnol Lett 37:1919–1928

    CAS  PubMed  Google Scholar 

  3. Greer LF 3rd, Szalay AA (2002) Imaging of light emission from the expression of luciferases in living cells and organisms: a review. Luminescence 17:43–74

    CAS  PubMed  Google Scholar 

  4. Padilla-Parra S, Tramier M (2012) FRET microscopy in the living cell: different approaches, strengths and weaknesses. BioEssays 34:369–376

    PubMed  Google Scholar 

  5. Sanford L, Palmer A (2017) Recent advances in development of genetically encoded fluorescent sensors. Methods Enzymol 589:1–49

    CAS  PubMed  Google Scholar 

  6. Harvey CD, Ehrhardt AG, Cellurale C et al (2008) A genetically encoded fluorescent sensor of ERK activity. Proc Natl Acad Sci U S A 105:19264–19269

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chapnick DA, Bunker E, Liu X (2015) A biosensor for the activity of the "sheddase" TACE (ADAM17) reveals novel and cell type-specific mechanisms of TACE activation. Sci Signal 8:rs1

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Komatsu N, Aoki K, Yamada M et al (2011) Development of an optimized backbone of FRET biosensors for kinases and GTPases. Mol Biol Cell 22:4647–4656

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou X, Clister TL, Lowry PR et al (2015) Dynamic visualization of mTORC1 activity in living cells. Cell Rep 10:1767–1777

    Google Scholar 

  10. Tsou P, Zheng B, Hsu CH et al (2011) A fluorescent reporter of AMPK activity and cellular energy stress. Cell Metab 13:476–486

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ravier MA, Cheng-Xue R, Palmer AE et al (2010) Subplasmalemmal Ca(2+) measurements in mouse pancreatic beta cells support the existence of an amplifying effect of glucose on insulin secretion. Diabetologia 53:1947–1957

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yoshizaki H, Ohba Y, Kurokawa K et al (2003) Activity of Rho-family GTPases during cell division as visualized with FRET-based probes. J Cell Biol 162:223–232

    CAS  PubMed  PubMed Central  Google Scholar 

  13. San Martin A, Ceballo S, Ruminot I et al (2013) A genetically encoded FRET lactate sensor and its use to detect the Warburg effect in single cancer cells. PLoS One 8:e57712

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Imamura H, Nhat KP, Togawa H et al (2009) Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci U S A 106:15651–15656

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kunkel MT, Toker A, Tsien RY et al (2007) Calcium-dependent regulation of protein kinase D revealed by a genetically encoded kinase activity reporter. J Biol Chem 282:6733–6742

    CAS  PubMed  Google Scholar 

  16. Palmer AE, Jin C, Reed JC et al (2004) Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. Proc Natl Acad Sci U S A 101:17404–17409

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lam AJ, St-Pierre F, Gong Y et al (2012) Improving FRET dynamic range with bright green and red fluorescent proteins. Nat Methods 9:1005–1012

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Takanaga H, Frommer WB (2010) Facilitative plasma membrane transporters function during ER transit. FASEB J 24:2849–2858

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gruenwald K, Holland JT, Stromberg V et al (2012) Visualization of glutamine transporter activities in living cells using genetically encoded glutamine sensors. PLoS One 7:e38591

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ma Y, Yamamoto Y, Nicovich PR et al (2017) A FRET sensor enables quantitative measurements of membrane charges in live cells. Nat Biotechnol 35:363–370

    CAS  PubMed  Google Scholar 

  21. San Martin A, Ceballo S, Baeza-Lehnert F et al (2014) Imaging mitochondrial flux in single cells with a FRET sensor for pyruvate. PLoS One 9:e85780

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant R01GM113141 and the DARPA cooperative agreement W911NF-14-2-0019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William M. Old .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chapnick, D.A., Bunker, E., Liu, X., Old, W.M. (2019). Temporal Metabolite, Ion, and Enzyme Activity Profiling Using Fluorescence Microscopy and Genetically Encoded Biosensors. In: D'Alessandro, A. (eds) High-Throughput Metabolomics. Methods in Molecular Biology, vol 1978. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9236-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9236-2_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9235-5

  • Online ISBN: 978-1-4939-9236-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics