Skip to main content

Insights into Dynamic Network States Using Metabolomic Data

  • Protocol
  • First Online:
High-Throughput Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1978))

Abstract

Metabolomic data is the youngest of the high-throughput data types; however, it is potentially one of the most informative, as it provides a direct, quantitative biochemical phenotype. There are a number of ways in which metabolomic data can be analyzed in systems biology; however, the thermodynamic and kinetic relevance of these data cannot be overstated. Genome-scale metabolic network reconstructions provide a natural context to incorporate metabolomic data in order to provide insight into the condition-specific kinetic characteristics of metabolic networks. Herein we discuss how metabolomic data can be incorporated into constraint-based models in a flexible framework that enables scaling from small pathways to cell-scale models, while being able to accommodate coarse-grained to more detailed, allosteric interactions, all using the well-known principle of mass action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn SY, Jamshidi N, Mo ML, Wu W, Eraly SA, Dnyanmote A, Bush KT, Gallegos TF, Sweet DH, Palsson BØ, Nigam SK (2011) Linkage of organic anion transporter-1 to metabolic pathways through integrated “omics”-driven network and functional analysis. J Biol Chem 286(36):31522–31531

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Beard DA, Liang S-d, Qian H (2002) Energy balance for analysis of complex metabolic networks. Biophys J 83(1):79–86

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bordbar A, Monk JM, King ZA, Palsson BØ (2014) Constraint-based models predict metabolic and associated cellular functions. Nat Rev Genet 15:107–120

    CAS  PubMed  Google Scholar 

  4. Bordbar A, McCloskey D, Zielinski DC, Sonnenschein N, Jamshidi N, Palsson BØ (2015) Personalized whole-cell kinetic models of metabolism for discovery in genomics and pharmacodynamics. Cell Syst 1(4):283–292

    CAS  PubMed  Google Scholar 

  5. Canelas AB, ten Pierick A, Ras C, Seifar RM, van Dam JC, van Gulik WM, Heijnen JJ (2009) Quantitative evaluation of intracellular metabolite extraction techniques for yeast metabolomics. Anal Chem 81:7379–7389

    CAS  PubMed  Google Scholar 

  6. Chakrabarti A, Miskovic L, Soh KC, Hatzimanikatis V (2013) Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints. Biotechnol J 8(9):1043–1057

    CAS  PubMed  Google Scholar 

  7. Dräger A, Palsson BØ (2014) Improving collaboration by standardization efforts in systems biology. Front Bioeng 2(61). https://doi.org/10.3389/fbioe.2014.00061

  8. Dräger A, Zielinski DC, Keller R, Rall M, Eichner J, Palsson BO, Zell A (2015) SBMLsqueezer 2: context-sensitive creation of kinetic equations in biochemical networks. BMC Syst Biol 9(1):1–17

    Google Scholar 

  9. Du B, Zielinski D, Dräger A, Tan J, Zhang Z, Ruggiero K, Arzumanyan G, Palsson BO (2016) Evaluation of rate law approximations in bottom-up kinetic models of metabolism. BMC Syst Biol 10(1):1–15

    Google Scholar 

  10. Duarte NC, Herrgard MJ, Palsson BØ (2004) Constraint-based models predict metabolic and associated cellular functions. Genome Res 14(7):1298–1309

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ebrahim A, Almaas E, Bauer E, Bordbar A, Burgard AP, Chang RL, Dräger A, Famili I, Feist AM, Fleming RMT, Fong SS, Hatzimanikatis V, Herrgård MJ, Holder A, Hucka M, Hyduke D, Jamshidi N, Lee SY, Le Novère N, Lerman JA, Lewis NE, Ma D, Mahadevan R, Maranas C, Nagarajan H, Navid A, Nielsen J, Nielsen LK, Nogales J, Noronha A, Pal C, Palsson BO, Papin JA, Patil KR, Price ND, Reed JL, Saunders M, Senger RS, Sonnenschein N, Sun Y, Thiele I (2015) Do genome-scale models need exact solvers or clearer standards? Mol Syst Biol 11(10):831

    PubMed  PubMed Central  Google Scholar 

  12. Famili I, Mahadevan R, Palsson BO (2005) k-cone analysis: determining all candidate values for kinetic parameters on a network scale. Biophys J 88(3):1616–1625

    CAS  PubMed  Google Scholar 

  13. Flamholz A, Noor E, Bar-Even A, Milo R (2011) Equilibrator–the biochemical thermodynamics calculator. Nucleic Acids Res 40(D1):D770–D775

    PubMed  PubMed Central  Google Scholar 

  14. Förster J, Famili I, Fu P, Palsson BØ, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13(2):244–253

    PubMed  PubMed Central  Google Scholar 

  15. Frezza C, Zheng L, Folger O, Rajagopalan KN, MacKenzie ED, Jerby L, Micaroni M, Chaneton B, Adam J, Hedley A, Kalna G, Tomlinson IP, Pollard PJ, Watson DG, Deberardinis RJ, Shlomi T, Ruppin E, Gottlieb E (2011) Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature 477(7363):225–228

    CAS  PubMed  Google Scholar 

  16. Gianchandani EP, Chavali AK, Papin JA (2010) The application of flux balance analysis in systems biology. Wiley Interdiscip Rev Syst Biol Med 2(3):372–382

    CAS  PubMed  Google Scholar 

  17. Glont M, Nguyen TVN, Graesslin M, Hälke R, Ali R, Schramm J, Wimalaratne SM, Kothamachu VB, Rodriguez N, Swat MJ, Eils J, Eils R, Laibe C, Malik-Sheriff RS, Chelliah V, Le Novère N, Hermjakob H (2018) BioModels: expanding horizons to include more modelling approaches and formats. Nucleic Acids Res 46:D1248–D1253

    CAS  PubMed  Google Scholar 

  18. Hamilton JJ, Dwivedi V, Reed JL (2013) Quantitative assessment of thermodynamic constraints on the solution space of genome-scale metabolic models. Biophys J 105(2):512–522

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Heinrich R, Rapoport SM, Rapoport TA (1978) Metabolic regulation and mathematical models. Prog Biophys Mol Biol 32:1–82

    Google Scholar 

  20. Henry CS, Broadbelt LJ, Hatzimanikatis V (2007) Thermodynamics-based metabolic flux analysis. Biophys J 92(5):1792–1805

    CAS  PubMed  Google Scholar 

  21. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr J-H, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novère N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4):524–531

    CAS  PubMed  Google Scholar 

  22. Jamshidi N, Palsson BØ (2008) Formulating genome-scale kinetic models in the post-genome era. Mol Syst Biol 4(1):171

    PubMed  PubMed Central  Google Scholar 

  23. Jamshidi N, Palsson BØ (2008) Top-down analysis of temporal hierarchy in biochemical reaction networks. PLoS Comput Biol 4(9):e1000177

    PubMed  PubMed Central  Google Scholar 

  24. Jamshidi N, Palsson BØ (2009) Flux-concentration duality in dynamic nonequilibrium biological networks. Biophys J 97(5):L11–L13

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jamshidi N, Palsson BØ (2010) Mass action stoichiometric simulation models: incorporating kinetics and regulation into stoichiometric models. Biophys J 98(2):175–185

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Jamshidi N, Miller FJ, Mandel J, Evans T, Kuo MD (2011) Individualized therapy of HHT driven by network analysis of metabolomic profiles. BMC Syst Biol 5:200

    PubMed  PubMed Central  Google Scholar 

  27. Jankowski MD, Henry CS, Broadbelt LJ, Hatzimanikatis V (2008) Group contribution method for thermodynamic analysis of complex metabolic networks. Biophys J 95(3):1487–1499

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kauffman KJ, Pajerowski JD, Jamshidi N, Palsson BØ, Edwards JS (2002) Description and analysis of metabolic connectivity and dynamics in the human red blood cell. Biophys J 83(2):2646–2662

    Google Scholar 

  29. Kim TY, Sohn SB, Kim YB, Kim WJ, Lee SY (2012) Recent advances in reconstruction and applications of genome-scale metabolic models. Biotechnol Adv 23(4):617–623

    CAS  Google Scholar 

  30. Kim B, Kim WJ, Kim DI, Lee SY (2015) Applications of genome-scale metabolic network model in metabolic engineering. J Ind Microbiol Biotechnol 42(3):339–348

    CAS  PubMed  Google Scholar 

  31. King ZA, Dräger A, Ebrahim A, Sonnenschein N, Lewis NE, Palsson BO (2015) Escher: a web application for building, sharing, and embedding data-rich visualizations of biological pathways. PLoS Comput Biol 11(8):e1004321

    PubMed  PubMed Central  Google Scholar 

  32. King ZA, Lu JS, Dräger A, Miller PC, Federowicz S, Lerman JA, Ebrahim A, Palsson BO, Lewis NE (2016) BiGG Models: a platform for integrating, standardizing, and sharing genome-scale models. Nucleic Acids Res 44(D1):D515–D522

    CAS  PubMed  Google Scholar 

  33. Kümmel A, Panke S, Heinemann M (2006) Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data. Mol Syst Biol 2:2006.0034

    PubMed  PubMed Central  Google Scholar 

  34. Lopes H, Rocha I (2017) Genome-scale modeling of yeast: chronology, applications and critical perspectives. FEMS Yeast Res 17(5). https://doi.org/10.1093/femsyr/fox050

  35. Lopez CF, Muhlich JL, Bachman JA, Sorger PK (2013) Programming biological models in python using PySB. Mol Syst Biol 9:646

    PubMed  PubMed Central  Google Scholar 

  36. Medley K, König M, Galdzicki M, Choi K, Sauro H, Stocking K, Gu S, Smith LP, Asifullah S, Somogyi A (2014–2018) Tellurium. https://github.com/sys-bio/tellurium

  37. Megchelenbrink W, Huynen M, Marchiori E (2014) optGpSampler: an improved tool for uniformly sampling the solution-space of genome-scale metabolic networks. PLoS One 9(2):e86587

    Google Scholar 

  38. Mo M, Palsson BØ, Herrgård MJ (2009) Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst Biol 3:37

    PubMed  PubMed Central  Google Scholar 

  39. Nielsen LK, Saa PA (2016) Construction of feasible and accurate kinetic models of metabolism: a Bayesian approach. Sci Rep 6:29635

    PubMed  PubMed Central  Google Scholar 

  40. Okino MS, Mavrovouniotis ML (1998) Simplification of mathematical models of chemical reaction systems. Chem Rev 98(2):391–408

    CAS  PubMed  Google Scholar 

  41. Osterlund T, Nookaew I, Nielsen J (2012) Fifteen years of large scale metabolic modeling of yeast: developments and impacts. Biotechnol Adv 30(5):979–988

    PubMed  Google Scholar 

  42. Palsson BØ (2006) Systems biology: determining the capabilities of reconstructed networks. Cambridge University Press, Cambridge

    Google Scholar 

  43. Palsson BØ (2011) Systems biology: simulation of dynamic network states, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  44. Palsson BØ, Joshi A, Ozturk SS (1987) Reducing complexity in metabolic networks: making metabolic meshes manageable. Fed Proc 46(8):2485–2489

    CAS  PubMed  Google Scholar 

  45. Pan S, Reed JL (2017) Advances in gap-filling genome-scale metabolic models and model-driven experiments lead to novel metabolic discoveries. Curr Opin Biotechnol 51:103–108

    PubMed  Google Scholar 

  46. Ramirez-Guana M, Marcu A, Pon A, Guo AC, Sajed T, Wishart NA, Karu N, Djoumbou Y, Arndt D, Wishart DS (2017) Ymdb 2.0: a significantly expanded version of the yeast metabolome database. Nucleic Acids Res 45(D1):D440–D445

    Google Scholar 

  47. Reich JG, Sel’kov EE (1981) Energy metabolism of the cell a theoretical treatise. Academic, London

    Google Scholar 

  48. Saa PA, Nielsen LK (2016) ll-ACHRB: a scalable algorithm for sampling the feasible solution space of metabolic networks. Bioinformatics 32(15):2330–2337

    CAS  PubMed  Google Scholar 

  49. Sastry A, Sonnenschein N (2013–2018) Mass-toolbox. https://github.com/opencobra/MASS-Toolbox

  50. Schellenberger J, Palsson BØ (2009) Use of randomized sampling for analysis of metabolic networks. J Biol Chem 284(9):5457–5461

    CAS  PubMed  Google Scholar 

  51. Schellenberger J, Park JO, Conrad TM, Palsson BØ (2010) BiGG: a biochemical genetic and genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinf 11(1):213

    Google Scholar 

  52. Schellenberger J, Lewis NE, Palsson BØ (2011) Elimination of thermodynamically infeasible loops in steady-state metabolic models. Biophys J 100(3):544–553

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Segel IH (1975) Enzyme kinetics: behavior and analysis of rapid equilibrium and steady-state enzyme systems. Wiley-Interscience, New York

    Google Scholar 

  54. Shoaie S, Karlsson F, Mardinoglu A, Nookaew I, Bordel S, Nielsen J (2013) Understanding the interactions between bacteria in the human gut through metabolic modeling. Sci Rep 3:2532

    PubMed  PubMed Central  Google Scholar 

  55. Srinivasan S, Cluett W, Mahadevan R (2015) Constructing kinetic models of metabolism at genome-scales: a review. Biotechnol J 10(9):1345–1359

    CAS  PubMed  Google Scholar 

  56. Terzer M, Maynard ND, Covert MW, Stelling J (2009) Genome-scale metabolic networks. Wiley Interdiscip Rev Syst Biol Med 1(3):285–297

    CAS  PubMed  Google Scholar 

  57. Tran LM, Rizk ML, Liao JC (2008) Ensemble modeling of metabolic networks. Biophys J 95(12):5606–5617

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neema Jamshidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mostolizadeh, R., Dräger, A., Jamshidi, N. (2019). Insights into Dynamic Network States Using Metabolomic Data. In: D'Alessandro, A. (eds) High-Throughput Metabolomics. Methods in Molecular Biology, vol 1978. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9236-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9236-2_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9235-5

  • Online ISBN: 978-1-4939-9236-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics