Skip to main content

Comprehensive LC-MS-Based Metabolite Fingerprinting Approach for Plant and Fungal-Derived Samples

  • Protocol
  • First Online:
High-Throughput Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1978))

Abstract

Liquid chromatography-mass spectrometry (LC-MS)-based nontargeted metabolome approaches aim to detect chemotypes as markers for stress, disease, developmental, or genetic perturbation. Herein, we present a metabolite fingerprinting workflow, which is applicable for the analysis of tissues and fluids derived from plants and fungi. This is based on a broad metabolite coverage by a two-phase extraction and the separate analysis of polar, and nonpolar compounds by positive as well as negative electrospray ionization. For analysis of the resulting comprehensive data sets, the interactive and user-friendly data mining software MarVis-Suite is used. It supports statistical analysis, adduct correction, data merging, as well as visualization of multivariate data. Finally, MarVis shapes marker identification to the organism of interest. Therefore, it provides access to the species-specific databases KEGG and BioCyc and to custom databases tailored by the user.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scholz M, Gatzek S, Sterling A, Fiehn O, Selbig J (2004) Metabolite fingerprinting: detecting biological features by independent component analysis. Bioinformatics 20(15):2447–2454

    CAS  PubMed  Google Scholar 

  2. Kumar R, Bohra A, Pandey AK, Pandey MK, Kumar A (2017) Metabolomics for plant improvement: status and prospects. Front Plant Sci 8(1302). https://doi.org/10.3389/fpls.2017.01302

  3. Tenenboim H, Brotman Y (2016) Omic relief for the biotically stressed: metabolomics of plant biotic interactions. Trends Plant Sci 21(9):781–791. https://doi.org/10.1016/j.tplants.2016.04.009

    Article  CAS  PubMed  Google Scholar 

  4. Fernandez O, Urrutia M, Bernillon S, Giauffret C, Tardieu F, Le Gouis J, Langlade N, Charcosset A, Moing A, Gibon Y (2016) Fortune telling: metabolic markers of plant performance. Metabolomics 12(10):1–14. https://doi.org/10.1007/s11306-016-1099-1

    Article  CAS  Google Scholar 

  5. Haggarty J, Burgess KEV (2017) Recent advances in liquid and gas chromatography methodology for extending coverage of the metabolome. Curr Opin Biotechnol 43:77–85. https://doi.org/10.1016/j.copbio.2016.09.006

    Article  CAS  PubMed  Google Scholar 

  6. Doerr A (2017) Global metabolomics. Nat Methods 14(1):32–32. https://doi.org/10.1038/nmeth.4112

    Article  CAS  Google Scholar 

  7. Spicer R, Salek RM, Moreno P, Cañueto D, Steinbeck C (2017) Navigating freely-available software tools for metabolomics analysis. Metabolomics 13(9):106. https://doi.org/10.1007/s11306-017-1242-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huan T, Forsberg EM, Rinehart D, Johnson CH, Ivanisevic J, Benton HP, Fang M, Aisporna A, Hilmers B, Poole FL, Thorgersen MP, Adams MWW, Krantz G, Fields MW, Robbins PD, Niedernhofer LJ, Ideker T, Majumder EL, Wall JD, Rattray NJW, Goodacre R, Lairson LL, Siuzdak G (2017) Systems biology guided by XCMS online metabolomics. Nat Methods 14(5):461–462. https://doi.org/10.1038/nmeth.4260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baran R (2017) Untargeted metabolomics suffers from incomplete raw data processing. Metabolomics 13(9):107. https://doi.org/10.1007/s11306-017-1246-3

    Article  CAS  Google Scholar 

  10. Xia J, Wishart DS (2016) Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. In: Current protocols in bioinformatics. John Wiley & Sons, Inc. https://doi.org/10.1002/cpbi.11

  11. Mahieu NG, Genenbacher JL, Patti GJ (2016) A roadmap for the XCMS family of software solutions in metabolomics. Curr Opin Chem Biol 30:87–93. https://doi.org/10.1016/j.cbpa.2015.11.009

    Article  CAS  PubMed  Google Scholar 

  12. Sedio BE (2017) Recent breakthroughs in metabolomics promise to reveal the cryptic chemical traits that mediate plant community composition, character evolution and lineage diversification. New Phytol 214(3):952–958. https://doi.org/10.1111/nph.14438

    Article  CAS  PubMed  Google Scholar 

  13. Feussner I, Polle A (2015) What the transcriptome does not tell—proteomics and metabolomics are closer to the plants’ patho-phenotype. Curr Opin Plant Biol 26(0):26–31. https://doi.org/10.1016/j.pbi.2015.05.023

    Article  CAS  PubMed  Google Scholar 

  14. Bruckhoff V, Haroth S, Feussner K, König S, Brodhun F, Feussner I (2016) Functional characterization of CYP94-genes and identification of a novel jasmonate catabolite in flowers. PLoS One 11(7):e0159875. https://doi.org/10.1371/journal.pone.0159875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. König S, Feussner K, Kaever A, Landesfeind M, Thurow C, Karlovsky P, Gatz C, Polle A, Feussner I (2014) Soluble phenylpropanoids are involved in the defense response of Arabidopsis against Verticillium longisporum. New Phytol 202(3):823–837. https://doi.org/10.1111/nph.12709

    Article  CAS  PubMed  Google Scholar 

  16. König S, Feussner K, Schwarz M, Kaever A, Iven T, Landesfeind M, Ternes P, Karlovsky P, Lipka V, Feussner I (2012) Arabidopsis mutants of sphingolipid fatty acid α-hydroxylases accumulate ceramides and salicylates. New Phytol 196(4):1086–1097. https://doi.org/10.1111/j.1469-8137.2012.04351.x

    Article  CAS  PubMed  Google Scholar 

  17. Floerl S, Majcherczyk A, Possienke M, Feussner K, Tappe H, Gatz C, Feussner I, Kües U, Polle A (2012) Verticillium longisporum infection affects the leaf apoplastic proteome, metabolome, and cell wall properties in Arabidopsis thaliana. PLoS One 7(2):e31435. https://doi.org/10.1371/journal.pone.0031435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tanaka S, Brefort T, Neidig N, Djamei A, Kahnt J, Vermerris W, Koenig S, Feussner K, Feussner I, Kahmann R (2014) A secreted Ustilago maydis effector promotes virulence by targeting anthocyanin biosynthesis in maize. eLife 3:e01355. https://doi.org/10.7554/eLife.01355

    Article  PubMed  PubMed Central  Google Scholar 

  19. Djamei A, Schipper K, Rabe F, Ghosh A, Vincon V, Kahnt J, Osorio S, Tohge T, Fernie AR, Feussner I, Feussner K, Meinicke P, Stierhof Y-D, Schwarz H, Macek B, Mann M, Kahmann R (2011) Metabolic priming by a secreted fungal effector. Nature 478(7369):395–398. https://doi.org/10.1038/nature10454

    Article  CAS  PubMed  Google Scholar 

  20. Popko J, Herrfurth C, Feussner K, Ischebeck T, Iven T, Haslam R, Hamilton M, Sayanova O, Napier J, Khozin-Goldberg I, Feussner I (2016) Metabolome analysis reveals betaine lipids as major source for triglyceride formation, and the accumulation of sedoheptulose during nitrogen-starvation of Phaeodactylum tricornutum. PLoS One 11(10):e0164673. https://doi.org/10.1371/journal.pone.0164673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bayram Ö, Feussner K, Dumkow M, Herrfurth C, Feussner I, Braus GH (2016) Changes of global gene expression and secondary metabolite accumulation during light-dependent Aspergillus nidulans development. Fungal Genet Biol 87:30–53. https://doi.org/10.1016/j.fgb.2016.01.004

    Article  CAS  PubMed  Google Scholar 

  22. Sarikaya-Bayram Ö, Bayram Ö, Feussner K, Kim J-H, Kim H-S, Kaever A, Feussner I, Chae K-S, Han D-M, Han K-H, Braus GH (2014) Membrane-bound methyltransferase complex VapA-VipC-VapB guides epigenetic control of fungal development. Dev Cell 29(4):406–420. https://doi.org/10.1016/j.devcel.2014.03.020

    Article  CAS  PubMed  Google Scholar 

  23. Gerke J, Bayram Ö, Feussner K, Landesfeind M, Shelest E, Feussner I, Braus GH (2012) Breaking the silence: protein stabilization uncovers silenced biosynthetic gene clusters in the fungus Aspergillus nidulans. Appl Environ Microbiol 78(23):8234–8244. https://doi.org/10.1128/aem.01808-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stringlis IA, Yu K, Feussner K, de Jonge R, Van Bentum S, Van Verk MC, Berendsen RL, Bakker PAHM, Feussner I, Pieterse CMJ (2018) MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proc Natl Acad Sci U S A 115(22):E5213–E5222. https://doi.org/10.1073/pnas.1722335115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kaever A, Landesfeind M, Feussner K, Mosblech A, Heilmann I, Morgenstern B, Feussner I, Meinicke P (2015) MarVis-Pathway: integrative and exploratory pathway analysis of non-targeted metabolomics data. Metabolomics 11(3):764–777. https://doi.org/10.1007/s11306-014-0734-y

    Article  CAS  PubMed  Google Scholar 

  26. Kaever A, Landesfeind M, Possienke M, Feussner K, Feussner I, Meinicke P (2012) MarVis-Filter: ranking, filtering, adduct and isotope correction of mass spectrometry data. J Biomed Biotechnol 2012:263910. https://doi.org/10.1155/2012/263910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kaever A, Lingner T, Feussner K, Göbel C, Feussner I, Meinicke P (2009) MarVis: a tool for clustering and visualization of metabolic biomarkers. BMC Bioinformatics 10(1):92. https://doi.org/10.1186/1471-2105-10-92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meinicke P, Lingner T, Kaever A, Feussner K, Göbel C, Feussner I, Karlovsky P, Morgenstern B (2008) Metabolite-based clustering and visualization of mass spectrometry data using one-dimensional self-organizing maps. Algorithms Mol Biol 3(1):9. https://doi.org/10.1186/1748-7188-3-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D (2008) Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res 49(5):1137–1146. https://doi.org/10.1194/jlr.D700041-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kaever A, Landesfeind M, Feussner K, Morgenstern B, Feussner I, Meinicke P (2014) Meta-analysis of pathway enrichment: combining independent and dependent omics data sets. PLoS One 9(2):e89297. https://doi.org/10.1371/journal.pone.0089297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tanabe M, Kanehisa M (2012) Using the KEGG database resource. Curr Protoc Bioinformatics 38(1):1.12.11–11.12.43. https://doi.org/10.1002/0471250953.bi0112s38

    Article  Google Scholar 

  32. Caspi R, Altman T, Dreher K, Fulcher CA, Subhraveti P, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Pujar A, Shearer AG, Travers M, Weerasinghe D, Zhang P, Karp PD (2012) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 40(Database issue):D742–D753. https://doi.org/10.1093/nar/gkr1014

    Article  CAS  PubMed  Google Scholar 

  33. Salek RM, Steinbeck C, Viant MR, Goodacre R, Dunn WB (2013) The role of reporting standards for metabolite annotation and identification in metabolomic studies. GigaScience 2(1):1–3. https://doi.org/10.1186/2047-217X-2-13

    Article  CAS  Google Scholar 

  34. Strehmel N, Böttcher C, Schmidt S, Scheel D (2014) Profiling of secondary metabolites in root exudates of Arabidopsis thaliana. Phytochemistry 108:35–46. https://doi.org/10.1016/j.phytochem.2014.10.003

    Article  CAS  PubMed  Google Scholar 

  35. Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K, Oda Y, Kakazu Y, Kusano M, Tohge T, Matsuda F, Sawada Y, Hirai MY, Nakanishi H, Ikeda K, Akimoto N, Maoka T, Takahashi H, Ara T, Sakurai N, Suzuki H, Shibata D, Neumann S, Iida T, Tanaka K, Funatsu K, Matsuura F, Soga T, Taguchi R, Saito K, Nishioka T (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45(7):703–714. https://doi.org/10.1002/jms.1777

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Federal Ministry of Education and Research (BioFung 0315595A) and the German Research Foundation (ZUK 45/2010). We are very grateful to Alexander Kaever and Manuel Landesfeind for collaborating with us on the development of the MarVis-Suite and improving the workflow of the metabolite fingerprinting approach. We thank Sabine Freitag and Pia Meyer for excellent assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Feussner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Feussner, K., Feussner, I. (2019). Comprehensive LC-MS-Based Metabolite Fingerprinting Approach for Plant and Fungal-Derived Samples. In: D'Alessandro, A. (eds) High-Throughput Metabolomics. Methods in Molecular Biology, vol 1978. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9236-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9236-2_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9235-5

  • Online ISBN: 978-1-4939-9236-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics