Skip to main content

Experimental Design in Quantitative Proteomics

  • Protocol
  • First Online:
Mass Spectrometry of Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1977))

Abstract

Metabolites and proteins are potential biomarkers. They can be identified with the help of mass spectrometry (MS). However, measurements obtained by using MS are prone to various random and systematic errors. The sensitivity of the technology to the errors poses practical challenges, including concerns about reproducibility of the MS-based assays and the possibility of false findings. Given the sensitivity, the proper design of MS-based experiments becomes of utmost importance. In this chapter, we review the basic experimental-design tools that can be used to prevent occurrence of errors that might cause misleading findings in MS-based experiments. We also present results of an experiment aimed at investigating variability of the intensity measurements produced by a MALDI-TOF mass spectrometer. The knowledge about the potential sources of systematic and random errors is fundamental in order to properly design an MS experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Collins FS, Varmus H (2015) A new initiative on precision medicine. N Engl J Med 372:793–795

    Article  CAS  Google Scholar 

  2. Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95

    Article  Google Scholar 

  3. Quezada H, Guzmán-Ortiz AL, Díaz-Sánchez H et al (2017) Omics-based biomarkers: current status and potential use in the clinic. Bol Med Hosp Infant Mex 74:219–226

    PubMed  Google Scholar 

  4. Buyse M, Sargent DJ, Grothey A et al (2010) Biomarkers and surrogate end points—the challenge of statistical validation. Nat Rev Clin Oncol 7:309–317

    Article  Google Scholar 

  5. Roychowdhury S, Chinnaiyan AM (2016) Translating cancer genomes and transcriptomes for precision oncology. CA Cancer J Clin 66:75–88

    Article  Google Scholar 

  6. Shehadeh LA, Hare JM (2013) Ribonucleic acid biomarkers for heart failure: is there a correlation between heart and blood transcriptomics? JACC Heart Fail 1:477–479

    Article  Google Scholar 

  7. Hathout Y (2015) Proteomic methods for biomarker discovery and validation. Are we there yet? Expert Rev of Proteomics 12:329–331

    Article  CAS  Google Scholar 

  8. Eidhammer I, Flikka K, Martens L, Mikalsen S-O (2007) Computational methods for mass spectrometry proteomics. John Wiley & Sons, Chichester

    Book  Google Scholar 

  9. Datta S, Mertens BJA (eds) (2016) Statistical analysis of proteomics, metabolomics, and lipidomics data using mass spectrometry. Springer, New York

    Google Scholar 

  10. Hilario M, Kalousis A, Pellegrini C, Muller M (2006) Processing and classification of protein mass spectra. Mass Spectrom Rev 25:409–449

    Article  CAS  Google Scholar 

  11. Ejigu BA, Valkenborg D, Baggerman G et al (2013) Evaluation of normalization methods to pave the way towards large-scale LC-MS-based metabolomic profiling experiments. OMICS 17:473–485

    Article  CAS  Google Scholar 

  12. Petricoin EF III, Ardekani AM, Hitt BA et al (2002) Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359:572–577

    Article  CAS  Google Scholar 

  13. Conrads TP, Fusaro VA, Ross S et al (2004) High-resolution serum proteomic features for ovarian cancer detection. Endocr Relat Cancer 11:163–178

    Article  CAS  Google Scholar 

  14. Baggerly KA, Morris JS, Coombes KR (2004) Reproducibility of SELDI-TOF protein patterns in serum: comparing datasets from different experiments. Bioinformatics 20:777–785

    Article  CAS  Google Scholar 

  15. Gail MH (2005) Bias. In: Encyclopedia of biostatistics. Wiley, New York

    Google Scholar 

  16. Cox DR, Reid N (2000) The theory of the design of experiments. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Burzykowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Burzykowski, T., Claesen, J., Valkenborg, D. (2019). Experimental Design in Quantitative Proteomics. In: Evans, C., Wright, P., Noirel, J. (eds) Mass Spectrometry of Proteins. Methods in Molecular Biology, vol 1977. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9232-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9232-4_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9231-7

  • Online ISBN: 978-1-4939-9232-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics