Skip to main content

Assessment of Mitochondrial Stress in Neurons: Proximity Ligation Assays to Detect Recruitment of Stress-Responsive Proteins to Mitochondria

  • Protocol
  • First Online:
Cell Culture Techniques

Part of the book series: Neuromethods ((NM,volume 145))

  • 1387 Accesses

Abstract

Mitochondria are highly integrated organelles that must readily alter organelle physiology to adapt to the changing environment of neurons. Failure in the mechanisms regulating organelle adaptation and homeostasis manifests as perturbations in bioenergetics, Ca2+ buffering, and mitochondrial dynamics, which ultimately affect the integrity of organelle membranes, DNA, and proteins. Collectively, these anomalies in organelle function are referred to as mitochondrial stress. While elegant methods have been developed to measure fundamental mitochondrial physiology, only recently have new strategies emerged to investigate the regulatory mechanisms responsible for mitochondrial stress responses. The emergence of cytosolic, stress-responsive protein kinases and phosphatases demonstrates the importance of neuron-mitochondrial cross talk for regulating organelle health and quality. The magnitude of signaling cascades on the outer mitochondrial membrane (OMM) can greatly influence organelle form and function. Thus, interpreting OMM signaling events in the context of mitochondrial function is critical to understanding the role of stress-responsive protein kinases and phosphatases in health and disease.

In this chapter, we will provide a brief review of standard approaches to assess mitochondrial physiology and stress in neurons. The sources of neuronal mitochondria and the techniques used to measure bioenergetics, Ca2+ flux, organelle dynamics, radical production, and the integrity of fundamental organelle processes are discussed. The emphasis of the chapter pertains to methods that identify and validate the presence of stress-responsive signaling proteins (i.e., kinases and phosphatases) on the OMM in cultured neurons and fixed CNS tissues. We will describe our approach to proximity ligation assays for evaluating mitochondrial stress responses, specifically c-Jun N-terminal kinase (JNK) OMM signaling, in cells and brain sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harris JJ, Jolivet R, Attwell D (2012) Synaptic energy use and supply. Neuron 75:762–777

    Article  CAS  PubMed  Google Scholar 

  2. Duchen MR (1992) Ca(2+)-dependent changes in the mitochondrial energetics in single dissociated mouse sensory neurons. Biochem J 283(Pt 1):41–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Llorente-Folch I, Rueda CB, Pardo B, Szabadkai G, Duchen MR, Satrustegui J (2015) The regulation of neuronal mitochondrial metabolism by calcium. J Physiol 593:3447–3462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. MacAskill AF, Kittler JT (2010) Control of mitochondrial transport and localization in neurons. Trends Cell Biol 20:102–112

    Article  CAS  PubMed  Google Scholar 

  5. Sheng ZH (2017) The interplay of axonal energy homeostasis and mitochondrial trafficking and anchoring. Trends Cell Biol 27:403–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Smith GM, Gallo G (2018) The role of mitochondria in axon development and regeneration. Dev Neurobiol 78:221–237

    Article  CAS  PubMed  Google Scholar 

  7. Coffey ET, Hongisto V, Dickens M, Davis RJ, Courtney MJ (2000) Dual roles for c-Jun N-terminal kinase in developmental and stress responses in cerebellar granule neurons. J Neurosci 20:7602–7613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Petruzzella V, Sardanelli AM, Scacco S, Panelli D, Papa F, Trentadue R, Papa S (2012) Dysfunction of mitochondrial respiratory chain complex I in neurological disorders: genetics and pathogenetic mechanisms. Adv Exp Med Biol 942:371–384

    Article  CAS  PubMed  Google Scholar 

  9. Chambers JW, Pachori A, Howard S, Ganno M, Hansen D Jr, Kamenecka T, Song X, Duckett D, Chen W, Ling YY, Cherry L, Cameron MD, Lin L, Ruiz CH, Lograsso P (2011) Small molecule c-jun-N-terminal kinase (JNK) inhibitors protect dopaminergic neurons in a model of Parkinson’s disease. ACS Chem Neurosci 2:198–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chambers JW, Pachori A, Howard S, Iqbal S, LoGrasso PV (2013) Inhibition of JNK mitochondrial localization and signaling is protective against ischemia/reperfusion injury in rats. J Biol Chem 288:4000–4011

    Article  CAS  PubMed  Google Scholar 

  11. Suomalainen A, Battersby BJ (2017) Mitochondrial diseases: the contribution of organelle stress responses to pathology. Nat Rev Mol Cell Biol 19:77

    Article  PubMed  CAS  Google Scholar 

  12. Oliveira G, Diogo L, Grazina M, Garcia P, Ataide A, Marques C, Miguel T, Borges L, Vicente AM, Oliveira CR (2005) Mitochondrial dysfunction in autism spectrum disorders: a population-based study. Dev Med Child Neurol 47:185–189

    Article  CAS  PubMed  Google Scholar 

  13. Krstic D, Knuesel I (2012) Deciphering the mechanism underlying late-onset Alzheimer disease. Nat Rev Neurol 9:25

    Article  PubMed  CAS  Google Scholar 

  14. Czarny P, Wigner P, Galecki P, Sliwinski T (2018) The interplay between inflammation, oxidative stress, DNA damage, DNA repair and mitochondrial dysfunction in depression. Prog Neuro-Psychopharmacol Biol Psychiatry 80:309–321

    Article  CAS  Google Scholar 

  15. Ryan BJ, Hoek S, Fon EA, Wade-Martins R (2015) Mitochondrial dysfunction and mitophagy in Parkinson’s: from familial to sporadic disease. Trends Biochem Sci 40:200–210

    Article  CAS  PubMed  Google Scholar 

  16. Ben-Shachar D (2017) Mitochondrial multifaceted dysfunction in schizophrenia; complex I as a possible pathological target. Schizophr Res 187:3–10

    Article  PubMed  Google Scholar 

  17. Andreux PA, Houtkooper RH, Auwerx J (2013) Pharmacological approaches to restore mitochondrial function. Nat Rev Drug Discov 12:465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cooper-Knock J, Kirby J, Ferraiuolo L, Heath PR, Rattray M, Shaw PJ (2012) Gene expression profiling in human neurodegenerative disease. Nat Rev Neurol 8:518

    Article  CAS  PubMed  Google Scholar 

  19. Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, Miller GW, Yagi T, Matsuno-Yagi A, Greenamyre JT (2003) Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 23:10756–10764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sherer TB, Kim JH, Betarbet R, Greenamyre JT (2003) Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol 179:9–16

    Article  CAS  PubMed  Google Scholar 

  21. Couvillion MT, Soto IC, Shipkovenska G, Churchman LS (2016) Synchronized mitochondrial and cytosolic translation programs. Nature 533:499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shpilka T, Haynes CM (2017) The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat Rev Mol Cell Biol 19:109

    Article  PubMed  CAS  Google Scholar 

  23. Akabane S, Uno M, Tani N, Shimazaki S, Ebara N, Kato H, Kosako H, Oka T (2016) PKA regulates PINK1 stability and Parkin recruitment to damaged mitochondria through phosphorylation of MIC60. Mol Cell 62:371–384

    Article  CAS  PubMed  Google Scholar 

  24. Dagda RK, Gusdon AM, Pien I, Strack S, Green S, Li C, Van Houten B, Cherra SJ 3rd, Chu CT (2011) Mitochondrially localized PKA reverses mitochondrial pathology and dysfunction in a cellular model of Parkinson’s disease. Cell Death Differ 18:1914–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Das Banerjee T, Dagda RY, Dagda M, Chu CT, Rice M, Vazquez-Mayorga E, Dagda RK (2017) PINK1 regulates mitochondrial trafficking in dendrites of cortical neurons through mitochondrial PKA. J Neurochem 142:545–559

    Article  CAS  PubMed  Google Scholar 

  26. Dickey AS, Strack S (2011) PKA/AKAP1 and PP2A/Bbeta2 regulate neuronal morphogenesis via Drp1 phosphorylation and mitochondrial bioenergetics. J Neurosci 31:15716–15726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chambers JW, Cherry L, Laughlin JD, Figuera-Losada M, Lograsso PV (2011) Selective inhibition of mitochondrial JNK signaling achieved using peptide mimicry of the Sab kinase interacting motif-1 (KIM1). ACS Chem Biol 6:808–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chambers JW, Howard S, LoGrasso PV (2013) Blocking c-Jun N-terminal kinase (JNK) translocation to the mitochondria prevents 6-hydroxydopamine-induced toxicity in vitro and in vivo. J Biol Chem 288:1079–1087

    Article  CAS  PubMed  Google Scholar 

  29. Chambers JW, LoGrasso PV (2011) Mitochondrial c-Jun N-terminal kinase (JNK) signaling initiates physiological changes resulting in amplification of reactive oxygen species generation. J Biol Chem 286:16052–16062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nijboer CH, Bonestroo HJ, Zijlstra J, Kavelaars A, Heijnen CJ (2013) Mitochondrial JNK phosphorylation as a novel therapeutic target to inhibit neuroinflammation and apoptosis after neonatal ischemic brain damage. Neurobiol Dis 54:432–444

    Article  CAS  PubMed  Google Scholar 

  31. Wong W, Scott JD (2004) AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol 5:959–970

    Article  CAS  PubMed  Google Scholar 

  32. Wiltshire C, Gillespie DA, May GH (2004) Sab (SH3BP5), a novel mitochondria-localized JNK-interacting protein. Biochem Soc Trans 32:1075–1077

    Article  CAS  PubMed  Google Scholar 

  33. Wiltshire C, Matsushita M, Tsukada S, Gillespie DA, May GH (2002) A new c-Jun N-terminal kinase (JNK)-interacting protein, Sab (SH3BP5), associates with mitochondria. Biochem J 367:577–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Toyama EQ, Herzig S, Courchet J, Lewis TL, Losón OC, Hellberg K, Young NP, Chen H, Polleux F, Chan DC, Shaw RJ (2016) AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351:275–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hoffman NJ, Parker BL, Chaudhuri R, Fisher-Wellman KH, Kleinert M, Humphrey SJ, Yang P, Holliday M, Trefely S, Fazakerley DJ, Stöckli J, Burchfield JG, Jensen TE, Jothi R, Kiens B, Wojtaszewski JFP, Richter EA, James DE (2015) Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates. Cell Metab 22:922–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chinopoulos C, Zhang SF, Thomas B, Ten V, Starkov AA (2011) Isolation and functional assessment of mitochondria from small amounts of mouse brain tissue. In: Manfredi G, Kawamata H (eds) Neurodegeneration: methods and protocols. Humana Press, Totowa, pp 311–324

    Chapter  Google Scholar 

  37. Sodero AO, Rodriguez-Silva M, Salio C, Sassoe-Pognetto M, Chambers JW (2017) Sab is differentially expressed in the brain and affects neuronal activity. Brain Res 1670:76–85

    Article  CAS  PubMed  Google Scholar 

  38. Dunkley PR, Jarvie PE, Heath JW, Kidd GJ, Rostas JAP (1986) A rapid method for isolation of synaptosomes on Percoll gradients. Brain Res 372:115–129

    Article  CAS  PubMed  Google Scholar 

  39. Kim HJ, Magrané J (2011) Isolation and culture of neurons and astrocytes from the mouse brain cortex. In: Manfredi G, Kawamata H (eds) Neurodegeneration: methods and protocols. Humana Press, Totowa, pp 63–75

    Chapter  Google Scholar 

  40. Wang L, Meece K, Williams DJ, Lo KA, Zimmer M, Heinrich G, Martin Carli J, Leduc CA, Sun L, Zeltser LM, Freeby M, Goland R, Tsang SH, Wardlaw SL, Egli D, Leibel RL (2015) Differentiation of hypothalamic-like neurons from human pluripotent stem cells. J Clin Invest 125:796–808

    Article  PubMed  PubMed Central  Google Scholar 

  41. Shi Y, Kirwan P, Livesey FJ (2012) Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protoc 7:1836

    Article  CAS  PubMed  Google Scholar 

  42. Giordano G, Costa LG (2011) Primary neurons in culture and neuronal cell lines for in vitro neurotoxicological studies. In: Costa LG, Giordano G, Guizzetti M (eds) In vitro neurotoxicology: methods and protocols. Humana Press, Totowa, pp 13–27

    Chapter  Google Scholar 

  43. Griffiths EJ, Rutter GA (2009) Mitochondrial calcium as a key regulator of mitochondrial ATP production in mammalian cells. Biochim Biophys Acta (BBA) – Bioenerg 1787:1324–1333

    Article  CAS  Google Scholar 

  44. Alnaes E, Rahamimoff R (1975) On the role of mitochondria in transmitter release from motor nerve terminals. J Physiol 248:285–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hall CN, Klein-Flugge MC, Howarth C, Attwell D (2012) Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing. J Neurosci 32:8940–8951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pathak D, Shields LY, Mendelsohn BA, Haddad D, Lin W, Gerencser AA, Kim H, Brand MD, Edwards RH, Nakamura K (2015) The role of mitochondrially derived ATP in synaptic vesicle recycling. J Biol Chem 290:22325–22336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Verstreken P, Ly CV, Venken KJ, Koh TW, Zhou Y, Bellen HJ (2005) Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 47:365–378

    Article  CAS  PubMed  Google Scholar 

  48. McNay EC, Fries TM, Gold PE (2000) Decreases in rat extracellular hippocampal glucose concentration associated with cognitive demand during a spatial task. Proc Natl Acad Sci U S A 97:2881–2885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Izyumov DS, Avetisyan AV, Pletjushkina OY, Sakharov DV, Wirtz KW, Chernyak BV, Skulachev VP (2004) “Wages of fear”: transient threefold decrease in intracellular ATP level imposes apoptosis. Biochim Biophys Acta 1658:141–147

    Article  CAS  PubMed  Google Scholar 

  50. Yang N-C, Ho W-M, Chen Y-H, Hu M-L (2002) A convenient one-step extraction of cellular ATP using boiling water for the luciferin-luciferase assay of ATP. Anal Biochem 306:323–327

    Article  CAS  PubMed  Google Scholar 

  51. Ford SR, Chenault KH, Bunton LS, Hampton GJ, McCarthy J, Hall MS, Pangburn SJ, Buck LM, Leach FR (1996) Use of firefly luciferase for ATP measurement: other nucleotides enhance turnover. J Biolumin Chemilumin 11:149–167

    Article  CAS  PubMed  Google Scholar 

  52. Imamura H, Nhat KP, Togawa H, Saito K, Iino R, Kato-Yamada Y, Nagai T, Noji H (2009) Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci U S A 106:15651–15656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nadee N, Moraes TC (2018) Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett 592:728–742

    Article  CAS  Google Scholar 

  54. Pei L, Wallace DC (2018) Mitochondrial etiology of neuropsychiatric disorders. Biol Psychiatry 83:722–730

    Article  CAS  PubMed  Google Scholar 

  55. Murphy M (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  PubMed  Google Scholar 

  56. Papa S, De Rasmo D (2013) Complex I deficiencies in neurological disorders. Trends Mol Med 19:61–69

    Article  CAS  PubMed  Google Scholar 

  57. Pooja J, Xu W, Johan A (2016) Analysis of mitochondrial respiratory chain supercomplexes using blue native polyacrylamide gel electrophoresis (BN-PAGE). Curr Protoc Mouse Biol 6:1–14

    Article  Google Scholar 

  58. Beutner G, Porter GA Jr (2017) Analyzing supercomplexes of the mitochondrial electron transport chain with native electrophoresis, in-gel assays, and electroelution. J Vis Exp 124. https://doi.org/10.3791/55738

  59. Kirby DM, Thorburn DR, Turnbull DM, Taylor RW (2007) Biochemical assays of respiratory chain complex activity. Methods Cell Biol 80:93–119

    Article  CAS  PubMed  Google Scholar 

  60. Gerencser AA, Neilson A, Choi SW, Edman U, Yadava N, Oh RJ, Ferrick DA, Nicholls DG, Brand MD (2009) Quantitative microplate-based respirometry with correction for oxygen diffusion. Anal Chem 81:6868–6878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D, Armistead S, Lemire K, Orrell J, Teich J, Chomicz S, Ferrick DA (2007) Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Phys Cell Physiol 292:C125–C136

    Article  CAS  Google Scholar 

  62. Zhang L, Trushina E (2017) Respirometry in neurons. In: Strack S, Usachev YM (eds) Techniques to investigate mitochondrial function in neurons. Springer, New York, pp 95–113

    Chapter  Google Scholar 

  63. Silva LP, Lorenzi PL, Purwaha P, Yong V, Hawke DH, Weinstein JN (2013) Measurement of DNA concentration as a normalization strategy for metabolomic data from adherent cell lines. Anal Chem 85:9536–9542

    Article  CAS  PubMed  Google Scholar 

  64. Shcherbakova DM, Verkhusha VV (2013) Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat Methods 10:751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. David G, Barrett EF (2003) Mitochondrial Ca2+ uptake prevents desynchronization of quantal release and minimizes depletion during repetitive stimulation of mouse motor nerve terminals. J Physiol 548:425–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zengel JE, Sosa MA, Poage RE, Mosier DR (1994) Role of intracellular Ca2+ in stimulation-induced increases in transmitter release at the frog neuromuscular junction. J Gen Physiol 104:337–355

    Article  CAS  PubMed  Google Scholar 

  67. Devine MJ, Kittler JT (2018) Mitochondria at the neuronal presynapse in health and disease. Nat Rev Neurosci 19:63–80

    Article  CAS  PubMed  Google Scholar 

  68. David G, Talbot J, Barrett EF (2003) Quantitative estimate of mitochondrial [Ca2+] in stimulated motor nerve terminals. Cell Calcium 33:197–206

    Article  CAS  PubMed  Google Scholar 

  69. Fonteriz RI, de la Fuente S, Moreno A, Lobaton CD, Montero M, Alvarez J (2010) Monitoring mitochondrial [Ca(2+)] dynamics with rhod-2, ratiometric pericam and aequorin. Cell Calcium 48:61–69

    Article  CAS  PubMed  Google Scholar 

  70. Davidson SM, Duchen MR (2012) Imaging mitochondrial calcium signalling with fluorescent probes and single or two photon confocal microscopy. Methods Mol Biol 810:219–234

    Article  CAS  PubMed  Google Scholar 

  71. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887

    Article  CAS  PubMed  Google Scholar 

  72. Wu J, Prole DL, Shen Y, Lin Z, Gnanasekaran A, Liu Y, Chen L, Zhou H, Chen SR, Usachev YM, Taylor CW, Campbell RE (2014) Red fluorescent genetically encoded Ca2+ indicators for use in mitochondria and endoplasmic reticulum. Biochem J 464:13–22

    Article  CAS  PubMed  Google Scholar 

  73. Rose T, Goltstein PM, Portugues R, Griesbeck O (2014) Putting a finishing touch on GECIs. Front Mol Neurosci 7:88

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rysted JE, Lin Z, Usachev YM (2017)Techniques for simultaneous mitochondrial and cytosolic Ca2+ imaging in neurons. In: Strack, S, Usachev, YM (eds) Techniques to investigate mitochondrial function in neurons, pp 151–178. https://doi.org/10.1007/978-1-4939-6890-9_8

  75. Villalobos C, Alonso MT, García-Sancho J (2009) Bioluminescence imaging of calcium oscillations inside intracellular organelles. In: Rich PB, Douillet C (eds) Bioluminescence: methods and protocols. Humana Press, Totowa, pp 203–214

    Chapter  Google Scholar 

  76. Yamazaki RK, Mickey DL, Story M (1979) The calibration and use of a calcium ion-specific electrode for kinetic studies of mitochondrial calcium transport. Anal Biochem 93:430–441

    Article  CAS  PubMed  Google Scholar 

  77. Moreno AJM, Vicente JA (2012) Use of a calcium-sensitive electrode for studies on mitochondrial calcium transport. In: Palmeira CM, Moreno AJ (eds) Mitochondrial bioenergetics: methods and protocols. Humana Press, Totowa, pp 207–217

    Chapter  Google Scholar 

  78. Jackson JB, Nicholls DG (1986) Methods for the determination of membrane potential in bioenergetic systems. Methods Enzymol 127:557–577

    Article  CAS  PubMed  Google Scholar 

  79. Budd SL, Castilho RF, Nicholls DG (1997) Mitochondrial membrane potential and hydroethidine-monitored superoxide generation in cultured cerebellar granule cells. FEBS Lett 415:21–24

    Article  CAS  PubMed  Google Scholar 

  80. Gerencser AA, Chinopoulos C, Birket MJ, Jastroch M, Vitelli C, Nicholls DG, Brand MD (2012) Quantitative measurement of mitochondrial membrane potential in cultured cells: calcium-induced de- and hyperpolarization of neuronal mitochondria. J Physiol 590:2845–2871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nicholls DG (2012) Fluorescence measurement of mitochondrial membrane potential changes in cultured cells. Methods Mol Biol 810:119–133

    Article  CAS  PubMed  Google Scholar 

  82. Palmeira CM, Rolo AP (2012) Mitochondrial membrane potential (ΔΨ) fluctuations associated with the metabolic states of mitochondria. In: Palmeira CM, Moreno AJ (eds) Mitochondrial bioenergetics: methods and protocols. Humana Press, Totowa, pp 89–101

    Chapter  Google Scholar 

  83. Aiuchi T, Matsunaga M, Nakaya K, Nakamura Y (1985) Effects of probes of membrane potential on metabolism in synaptosomes. Biochim Biophys Acta Gen Subj 843:20–24

    Article  CAS  Google Scholar 

  84. Nicholls DG (2012) Fluorescence measurement of mitochondrial membrane potential changes in cultured cells. In: Palmeira CM, Moreno AJ (eds) Mitochondrial bioenergetics: methods and protocols. Humana Press, Totowa, pp 119–133

    Chapter  Google Scholar 

  85. Carelli V, Chan DC (2014) Mitochondrial DNA: impacting central and peripheral nervous systems. Neuron 84:1126–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly-Y M, Gidlöf S, Oldfors A, Wibom R, Törnell J, Jacobs HT, Larsson N-G (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429:417

    Article  CAS  PubMed  Google Scholar 

  87. Ye F, Samuels DC, Clark T, Guo Y (2014) High-throughput sequencing in mitochondrial DNA research. Mitochondrion 17:157–163

    Article  CAS  PubMed  Google Scholar 

  88. Wang W, Esbensen Y, Scheffler K, Eide L (2015) Analysis of mitochondrial DNA and RNA integrity by a real-time qPCR-based method. In: Weissig V, Edeas M (eds) Mitochondrial medicine: volume I, probing mitochondrial function. Springer, New York, pp 97–106

    Chapter  Google Scholar 

  89. Holt IJ, Reyes A (2012) Human mitochondrial DNA replication. Cold Spring Harb Perspect Biol 4:a012971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Jemt E, Persson Ö, Shi Y, Mehmedovic M, Uhler JP, Dávila López M, Freyer C, Gustafsson CM, Samuelsson T, Falkenberg M (2015) Regulation of DNA replication at the end of the mitochondrial D-loop involves the helicase TWINKLE and a conserved sequence element. Nucleic Acids Res 43:9262–9275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Macao B, Uhler JP, Siibak T, Zhu X, Shi Y, Sheng W, Olsson M, Stewart JB, Gustafsson CM, Falkenberg M (2015) The exonuclease activity of DNA polymerase γ is required for ligation during mitochondrial DNA replication. Nat Commun 6:7303

    Article  CAS  PubMed  Google Scholar 

  92. Payne BAI, Cree L, Chinnery PF (2015) Single-cell analysis of mitochondrial DNA. In: Weissig V, Edeas M (eds) Mitochondrial medicine: volume I, probing mitochondrial function. Springer, New York, pp 67–76

    Chapter  Google Scholar 

  93. Payne BAI, Gardner K, Coxhead J, Chinnery PF (2015) Deep resequencing of mitochondrial DNA. In: Weissig V, Edeas M (eds) Mitochondrial medicine: volume I, probing mitochondrial function. Springer, New York, pp 59–66

    Chapter  Google Scholar 

  94. Quispe-Tintaya W, White RR, Popov VN, Vijg J, Maslov AY (2013) Fast mitochondrial DNA isolation from mammalian cells for next-generation sequencing. BioTechniques 55:133–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Labbé K, Murley A, Nunnari J (2014) Determinants and functions of mitochondrial behavior. Annu Rev Cell Dev Biol 30:357–391

    Article  PubMed  CAS  Google Scholar 

  96. Plucińska G, Paquet D, Hruscha A, Godinho L, Haass C, Schmid B, Misgeld T (2012) In vivo imaging of disease-related mitochondrial dynamics in a vertebrate model system. J Neurosci 32:16203–16212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Kopeikina KJ, Carlson GA, Pitstick R, Ludvigson AE, Peters A, Luebke JI, Koffie RM, Frosch MP, Hyman BT, Spires-Jones TL (2011) Tau accumulation causes mitochondrial distribution deficits in neurons in a mouse model of tauopathy and in human Alzheimer’s disease brain. Am J Pathol 179:2071–2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Detmer SA, Chan DC (2007) Complementation between mouse Mfn1 and Mfn2 protects mitochondrial fusion defects caused by CMT2A disease mutations. J Cell Biol 176:405–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Züchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL, Zappia M, Nelis E, Patitucci A, Senderek J, Parman Y, Evgrafov O, Jonghe PD, Takahashi Y, Tsuji S, Pericak-Vance MA, Quattrone A, Battologlu E, Polyakov AV, Timmerman V, Schröder JM, Vance JM (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 36:449

    Article  PubMed  CAS  Google Scholar 

  100. Wang DB, Uo T, Kinoshita C, Sopher BL, Lee RJ, Murphy SP, Kinoshita Y, Garden GA, Wang H-G, Morrison RS (2014) Bax interacting factor-1 promotes survival and mitochondrial elongation in neurons. J Neurosci 34:2674–2683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Merrill RA, Flippo KH, Strack S (2017) Measuring mitochondrial shape with ImageJ. In: Strack S, Usachev YM (eds) Techniques to investigate mitochondrial function in neurons. Springer, New York, pp 31–48

    Chapter  Google Scholar 

  102. Trevisan T, Pendin D, Montagna A, Bova S, Ghelli AM, Daga A (2018) Manipulation of mitochondria dynamics reveals separate roles for form and function in mitochondria distribution. Cell Rep 23:1742–1753

    Article  CAS  PubMed  Google Scholar 

  103. Sasaki S (2010) Determination of altered mitochondria ultrastructure by electron microscopy. In: Bross P, Gregersen N (eds) Protein misfolding and cellular stress in disease and aging: concepts and protocols. Humana Press, Totowa, pp 279–290

    Chapter  Google Scholar 

  104. Bolea I, Gan W-B, Manfredi G, Magrané J (2014) Chapter six – imaging of mitochondrial dynamics in motor and sensory axons of living mice. In: Murphy AN, Chan DC (eds) Methods in enzymology. Academic, Amsterdam, pp 97–110

    Google Scholar 

  105. Otera H, Wang C, Cleland MM, Setoguchi K, Yokota S, Youle RJ, Mihara K (2010) Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J Cell Biol 191:1141–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lovy A, Molina AJA, Cerqueira FM, Trudeau K, Shirihai OS (2012) A faster, high resolution, mtPA-GFP-based mitochondrial fusion assay acquiring kinetic data of multiple cells in parallel using confocal microscopy. JoVE 65:e3991

    Google Scholar 

  107. Muñoz JP, Zorzano A (2015) Analysis of mitochondrial morphology and function under conditions of mitofusin 2 deficiency. In: Weissig V, Edeas M (eds) Mitochondrial medicine: volume II, manipulating mitochondrial function. Springer, New York, pp 307–320

    Chapter  Google Scholar 

  108. Ashrafi G, Schwarz TL (2012) The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 20:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Ferree AW, Trudeau K, Zik E, Benador IY, Twig G, Gottlieb RA, Shirihai OS (2013) MitoTimer probe reveals the impact of autophagy, fusion, and motility on subcellular distribution of young and old mitochondrial protein and on relative mitochondrial protein age. Autophagy 9:1887–1896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sun N, Malide D, Liu J, Rovira II, Combs CA, Finkel T (2017) A fluorescence-based imaging method to measure in vitro and in vivo mitophagy using mt-Keima. Nat Protoc 12:1576

    Article  CAS  PubMed  Google Scholar 

  111. McWilliams TG, Prescott AR, Allen GFG, Tamjar J, Munson MJ, Thomson C, Muqit MMK, Ganley IG (2016) mito-QC illuminates mitophagy and mitochondrial architecture in vivo. J Cell Biol 214:333–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rodger CE, TG MW, Ganley IG (2018) Mammalian mitophagy – from in vitro molecules to in vivo models. FEBS J 285:1185–1202

    Article  CAS  PubMed  Google Scholar 

  113. McWilliams TG, Prescott AR, Montava-Garriga L, Ball G, Singh F, Barini E, Muqit MMK, Brooks SP, Ganley IG (2018) Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand. Cell Metab 27:439–449.e435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sheng Z-H, Cai Q (2012) Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci 13:77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL, Selkoe D, Rice S, Steen J, LaVoie MJ, Schwarz TL (2011) PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147:893–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhou B, Lin M-Y, Sun T, Knight AL, Sheng Z-H (2014) Chapter five – characterization of mitochondrial transport in neurons. In: Murphy AN, Chan DC (eds) Methods in enzymology. Academic, New York, pp 75–96

    Google Scholar 

  117. Course MM, Hsieh C-H, Tsai P-I, Codding-Bui JA, Shaltouki A, Wang X (2017) Live imaging mitochondrial transport in neurons. In: Strack S, Usachev YM (eds) Techniques to investigate mitochondrial function in neurons. Springer, New York, pp 49–66

    Chapter  Google Scholar 

  118. Edelman DB, Owens GC, Chen S (2011) Neuromodulation and mitochondrial transport: live imaging in hippocampal neurons over long durations. JoVE:e2599 52. https://doi.org/10.3791/2599

  119. Barrientos SA, Martinez NW, Yoo S, Jara JS, Zamorano S, Hetz C, Twiss JL, Alvarez J, Court FA (2011) Axonal degeneration is mediated by the mitochondrial permeability transition pore. J Neurosci 31:966–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Brustovetsky N, Brustovetsky T, Jemmerson R, Dubinsky JM (2002) Calcium-induced cytochrome c release from CNS mitochondria is associated with the permeability transition and rupture of the outer membrane. J Neurochem 80:207–218

    Article  CAS  PubMed  Google Scholar 

  121. Bernardi P, Krauskopf A, Basso E, Petronilli V, Blachly-Dyson E, Di Lisa F, Forte MA (2006) The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J 273:2077–2099

    Article  CAS  PubMed  Google Scholar 

  122. Bernardi P, Rasola A (2007) Calcium and cell death: the mitochondrial connection. Subcell Biochem 45:481–506

    Article  CAS  PubMed  Google Scholar 

  123. Brustovetsky T, Brustovetsky N (2017) Monitoring of permeability transition pore openings in mitochondria of cultured neurons. In: Strack S, Usachev YM (eds) Techniques to investigate mitochondrial function in neurons. Springer, New York, pp 239–248

    Chapter  Google Scholar 

  124. Abramov AY, Duchen MR (2011) Measurements of threshold of mitochondrial permeability transition pore opening in intact and permeabilized cells by flash photolysis of caged calcium. In: Manfredi G, Kawamata H (eds) Neurodegeneration: methods and protocols. Humana Press, Totowa, pp 299–309

    Chapter  Google Scholar 

  125. Ramshesh VK, Lemasters JJ (2012) Imaging of mitochondrial pH using SNARF-1. In: Palmeira CM, Moreno AJ (eds) Mitochondrial bioenergetics: methods and protocols. Humana Press, Totowa, pp 243–248

    Chapter  Google Scholar 

  126. Friberg H, Ferrand-Drake M, Bengtsson F, Halestrap AP, Wieloch T (1998) Cyclosporin A, but not FK 506, protects mitochondria and neurons against hypoglycemic damage and implicates the mitochondrial permeability transition in cell death. J Neurosci 18:5151–5159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Berendzen KM, Durieux J, Shao L-W, Tian Y, Kim H-e, Wolff S, Liu Y, Dillin A (2016) Neuroendocrine coordination of mitochondrial stress signaling and proteostasis. Cell 166:1553–1563.e1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Jensen MB, Jasper H (2014) Mitochondrial proteostasis in the control of aging and longevity. Cell Metab 20:214–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yano M, Kanazawa M, Terada K, Takeya M, Hoogenraad N, Mori M (1998) Functional analysis of human mitochondrial receptor Tom20 for protein import into mitochondria. J Biol Chem 273:26844–26851

    Article  CAS  PubMed  Google Scholar 

  130. Yano M, Kanazawa M, Terada K, Namchai C, Yamaizumi M, Hanson B, Hoogenraad N, Mori M (1997) Visualization of mitochondrial protein import in cultured mammalian cells with Green fluorescent protein and effects of overexpression of the human import receptor Tom20. J Biol Chem 272:8459–8465

    Article  CAS  PubMed  Google Scholar 

  131. Korde AS, Pettigrew LC, Craddock SD, Maragos WF (2005) The mitochondrial uncoupler 2,4-dinitrophenol attenuates tissue damage and improves mitochondrial homeostasis following transient focal cerebral ischemia. J Neurochem 94:1676–1684

    Article  CAS  PubMed  Google Scholar 

  132. Nargund AM, Fiorese CJ, Pellegrino MW, Deng P, Haynes CM (2015) Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPRmt. Mol Cell 58:123–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Fiorese CJ, Haynes CM (2017) Integrating the UPRmt into the mitochondrial maintenance network. Crit Rev Biochem Mol Biol 52:304–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fiorese CJ, Schulz AM, Lin Y-F, Rosin N, Pellegrino MW, Haynes CM (2016) The transcription factor ATF5 mediates a mammalian mitochondrial UPR. Curr Biol 26:2037–2043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Mukhopadhyay P, Rajesh M, Haskó G, Hawkins BJ, Madesh M, Pacher P (2007) Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy. Nat Protoc 2:2295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wagener KC, Kolbrink B, Dietrich K, Kizina KM, Terwitte LS, Kempkes B, Bao G, Müller M (2016) Redox indicator mice stably expressing genetically encoded neuronal roGFP: versatile tools to decipher subcellular redox dynamics in neuropathophysiology. Antioxid Redox Signal 25:41–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cochemé HM, Quin C, McQuaker SJ, Cabreiro F, Logan A, Prime TA, Abakumova I, Patel JV, Fearnley IM, James AM, Porteous CM, Smith RAJ, Saeed S, Carré JE, Singer M, Gems D, Hartley RC, Partridge L, Murphy MP (2011) Measurement of H2O2 within living Drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix. Cell Metab 13:340–350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Shchepinova MM, Cairns AG, Prime TA, Logan A, James AM, Hall AR, Vidoni S, Arndt S, Caldwell ST, Prag HA, Pell VR, Krieg T, Mulvey JF, Yadav P, Cobley JN, Bright TP, Senn HM, Anderson RF, Murphy MP, Hartley RC (2017) MitoNeoD: A mitochondria-targeted superoxide probe. Cell Chem Biol 24:1285–1298.e1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Jomova K, Vondrakova D, Lawson M, Valko M (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345:91–104

    Article  CAS  PubMed  Google Scholar 

  140. Chandel NS (2014) Mitochondria as signaling organelles. BMC Biol 12:34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Wilson TJ, Slupe AM, Strack S (2013) Cell signaling and mitochondrial dynamics: implications for neuronal function and neurodegenerative disease. Neurobiol Dis 51:13–26

    Article  CAS  PubMed  Google Scholar 

  142. Pagliarini DJ, Dixon JE (2006) Mitochondrial modulation: reversible phosphorylation takes center stage? Trends Biochem Sci 31:26–34

    Article  CAS  PubMed  Google Scholar 

  143. Horbinski C, Chu CT (2005) Kinase signaling cascades in the mitochondrion: a matter of life or death. Free Radic Biol Med 38:2–11

    Article  CAS  PubMed  Google Scholar 

  144. Lim S, Smith KR, Lim S-TS, Tian R, Lu J, Tan M (2016) Regulation of mitochondrial functions by protein phosphorylation and dephosphorylation. Cell Biosci 6:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Merrill RA, Strack S (2014) Mitochondria: a kinase anchoring protein 1, a signaling platform for mitochondrial form and function. Int J Biochem Cell Biol 48:92–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Boja ES, Phillips D, French SA, Harris RA, Balaban RS (2009) Quantitative mitochondrial phosphoproteomics using iTRAQ on an LTQ-Orbitrap with high energy collision dissociation. J Proteome Res 8:4665–4675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Calvo SE, Clauser KR, Mootha VK (2016) MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res 44:D1251–D1257

    Article  CAS  PubMed  Google Scholar 

  148. Deng WJ, Nie S, Dai J, Wu JR, Zeng R (2010) Proteome, phosphoproteome, and hydroxyproteome of liver mitochondria in diabetic rats at early pathogenic stages. Mol Cell Proteomics 9:100–116

    Article  CAS  PubMed  Google Scholar 

  149. Foster LJ, de Hoog CL, Zhang Y, Zhang Y, Xie X, Mootha VK, Mann M (2006) A mammalian organelle map by protein correlation profiling. Cell 125:187–199

    Article  CAS  PubMed  Google Scholar 

  150. O’Rourke B, Van Eyk JE, Foster DB (2011) Mitochondrial protein phosphorylation as a regulatory modality: implications for mitochondrial dysfunction in heart failure. Congest Heart Fail 17:269–282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Chen WW, Freinkman E, Wang T, Birsoy K, Sabatini DM (2016) Absolute quantification of matrix metabolites reveals the dynamics of mitochondrial metabolism. Cell 166:1324–1337.e1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ahier A, Dai C-Y, Tweedie A, Bezawork-Geleta A, Kirmes I, Zuryn S (2018) Affinity purification of cell-specific mitochondria from whole animals resolves patterns of genetic mosaicism. Nat Cell Biol 20:352–360

    Article  CAS  PubMed  Google Scholar 

  153. Chiao-Lin C, Norbert P (2017) Proximity-dependent labeling methods for proteomic profiling in living cells. Wiley Interdiscip Rev Dev Biol 6:e272

    Google Scholar 

  154. Kim DI, Roux KJ (2016) Filling the void: proximity-based labeling of proteins in living cells. Trends Cell Biol 26:804–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Peipei L, Jingjing L, Li W, Li-Jun D (2017) Proximity labeling of interacting proteins: application of BioID as a discovery tool. Proteomics 17:1700002

    Article  CAS  Google Scholar 

  156. Lee S-Y, Kang M-G, Park J-S, Lee G, Ting AY, Rhee H-W (2016) APEX fingerprinting reveals the subcellular localization of proteins of interest. Cell Rep 15:1837–1847

    Article  CAS  PubMed  Google Scholar 

  157. Susan RJ, Xue-Wen L, Sarah P, Susan LK, Philip JA (2015) Selective proteomic proximity labeling assay using tyramide (SPPLAT): a quantitative method for the proteomic analysis of localized membrane-bound protein clusters. Curr Protoc Protein Sci 80:19.27.11–19.27.18

    Google Scholar 

  158. Lohse MJ, Nuber S, Hoffmann C (2012) Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharmacol Rev 64:299–336

    Article  CAS  PubMed  Google Scholar 

  159. Waraho D, DeLisa MP (2009) Versatile selection technology for intracellular protein–protein interactions mediated by a unique bacterial hitchhiker transport mechanism. Proc Natl Acad Sci 106:3692–3697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Chen T-C, Lin K-T, Chen C-H, Lee S-A, Lee P-Y, Liu Y-W, Kuo Y-L, Wang F-S, Lai J-M, Huang C-YF (2014) Using an in situ proximity ligation assay to systematically profile endogenous protein–protein interactions in a pathway network. J Proteome Res 13:5339–5346

    Article  CAS  PubMed  Google Scholar 

  161. Paul M, Skalli O (2016) Chapter nineteen – synemin: molecular features and the use of proximity ligation assay to study its interactions. In: Omary MB, Liem RKH (eds) Methods in enzymology. Academic, New York, pp 537–555

    Google Scholar 

  162. Jaume T, Víctor FD, Francisco C (2015) Visualizing G protein-coupled receptor-receptor interactions in brain using proximity ligation in situ assay. Curr Protoc Cell Biol 67:17.17.11–17.17.16

    Google Scholar 

  163. Bagchi S, Fredriksson R, Wallén-Mackenzie Å (2015) In situ proximity ligation assay (PLA). In: Hnasko R (ed) ELISA: methods and protocols. Springer, New York, pp 149–159

    Chapter  Google Scholar 

  164. Söderberg O, Gullberg M, Jarvius M, Ridderstråle K, Leuchowius K-J, Jarvius J, Wester K, Hydbring P, Bahram F, Larsson L-G, Landegren U (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 3:995

    Article  PubMed  CAS  Google Scholar 

  165. Swartzman E, Shannon M, Lieu P, Chen S-M, Mooney C, Wei E, Kuykendall J, Tan R, Settineri T, Egry L, Ruff D (2010) Expanding applications of protein analysis using proximity ligation and qPCR. Methods 50:S23–S26

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Florida International University and the Robert Stempel College of Public Health & Social Work for the start-up funds that supported the studies discussed in the chapter. MRS was supported by a RISE grant NIH/NIGMS R25 GM06134. The authors would also like to express their gratitude to Philip V. LoGrasso (formerly of the Scripps Research Institute) for the tissue samples and imaging data using the 6-OHDA model. The authors extend their appreciation to the members of the Chambers’ Lab who provided helpful comments during the preparation of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy W. Chambers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rodriguez-Silva, M., Ashourian, K.T., Smith, A.D., Chambers, J.W. (2019). Assessment of Mitochondrial Stress in Neurons: Proximity Ligation Assays to Detect Recruitment of Stress-Responsive Proteins to Mitochondria. In: Aschner, M., Costa, L. (eds) Cell Culture Techniques. Neuromethods, vol 145. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9228-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9228-7_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9227-0

  • Online ISBN: 978-1-4939-9228-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics