Skip to main content

Glial Reactivity in Response to Neurotoxins: Relevance and Methods

  • Protocol
  • First Online:
Cell Culture Techniques

Part of the book series: Neuromethods ((NM,volume 145))

Abstract

Microglia and astrocytes become activated in response to diverse toxic exposures, regardless of the cellular or molecular targets affected; biomarkers of these responses, therefore, can be used to detect and localize damage to any area of the CNS. A variety of cellular and molecular markers of reactive microglia and astrocytes have been implemented to reveal all types of neural injuries, including those caused by chemical insults of the CNS. Recent advances in approaches to evaluate the cell-specific transcriptome in the CNS allow for an expansion of the existing repertoire of glial activation biomarkers. Here, we show how the approach we used to validate assays of glial fibrillary acidic protein (GFAP) as a biomarker of astrogliosis can be extended to a cell signaling-based assay via phosphorylation of signal transducer and activator of transcription 3 (STAT3). We also introduce new methods to assess cell type-specific gene expression, glial-specific pharmacological inhibition, and genetic manipulation that can be used to evaluate glial reactivity, with the overall goal of defining the microglial and astroglial activation phenotype that results from exposures to broad classes of neurotoxicants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. More SV, Kumar H, Kim IS, Song SY, Choi DK (2013) Cellular and molecular mediators of neuroinflammation in the pathogenesis of Parkinson’s disease. Mediat Inflamm 2013:952375

    Article  CAS  Google Scholar 

  2. Cai Z, Hussain MD, Yan LJ (2014) Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer’s disease. Int J Neurosci 124(5):307–321

    Article  CAS  PubMed  Google Scholar 

  3. Phillips EC, Croft CL, Kurbatskaya K, O’Neill MJ, Hutton ML, Hanger DP, Garwood CJ, Noble W (2014) Astrocytes and neuroinflammation in Alzheimer’s disease. Biochem Soc Trans 42(5):1321–1325

    Article  CAS  PubMed  Google Scholar 

  4. Crotti A, Glass CK (2015) The choreography of neuroinflammation in Huntington’s disease. Trends Immunol 36(6):364–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hooten KG, Beers DR, Zhao W, Appel SH (2015) Protective and toxic neuroinflammation in amyotrophic lateral sclerosis. Neurotherapeutics 12(2):364–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19(8):312–318

    Article  CAS  PubMed  Google Scholar 

  7. Burda JE, Sofroniew MV (2014) Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81(2):229–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Deng W, Poretz RD (2003) Oligodendroglia in developmental neurotoxicity. Neurotoxicology 24(2):161–178

    Article  CAS  PubMed  Google Scholar 

  9. de la Monte SM, Kril JJ (2014) Human alcohol-related neuropathology. Acta Neuropathol 127(1):71–90

    Article  CAS  PubMed  Google Scholar 

  10. Bosnjak ZJ, Logan S, Liu Y, Bai X (2016) Recent insights into molecular mechanisms of propofol-induced developmental neurotoxicity: implication for the protective strategies. Anesth Analg 123(5):1286–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ellwardt E, Zipp F (2014) Molecular mechanisms linking neuroinflammation and neurodegeneration in MS. Exp Neurol 262(Pt A):8–17

    Article  CAS  PubMed  Google Scholar 

  12. Vivekanantham S, Shah S, Dewji R, Dewji A, Khatri C, Ologunde R (2015) Neuroinflammation in Parkinson’s disease: role in neurodegeneration and tissue repair. Int J Neurosci 125(10):717–725

    Article  CAS  PubMed  Google Scholar 

  13. de Oliveira AC, Candelario-Jalil E, Fiebich BL, Santos Mda S, Palotás A, dos Reis HJ (2015) Neuroinflammation and neurodegeneration: pinpointing pathological and pharmacological targets. Biomed Res Int 2015:487241

    PubMed  PubMed Central  Google Scholar 

  14. Kempuraj D, Thangavel R, Natteru PA, Selvakumar GP, Saeed D, Zahoor H, Zaheer S, Iyer SS, Zaheer A (2016) Neuroinflammation induces neurodegeneration. J Neurol Neurosurg Spine 1(1):pii:1003

    Google Scholar 

  15. Smith BN, Wang JM, Vogt D, Vickers K, King DW, King LA (2013) Gulf war illness: symptomatology among veterans 10 years after deployment. J Occup Environ Med 55(1):104–110

    Article  PubMed  Google Scholar 

  16. Steele L (2000) Prevalence and patterns of Gulf War illness in Kansas veterans: association of symptoms with characteristics of person, place, and time of military service. Am J Epidemiol 152(10):992–1002

    Article  CAS  PubMed  Google Scholar 

  17. Koo BB, Michalovicz LT, Calderazzo S, Kelly KA, Sullivan K, Killiany RJ, O’Callaghan JP (2018) Corticosterone potentiates DFP-induced neuroinflammation and affects high-order diffusion imaging in a rat model of Gulf War Illness. Brain Behav Immun 67:2–46

    Article  CAS  Google Scholar 

  18. Locker AR, Michalovicz LT, Kelly KA, Miller JV, Miller DB, O’Callaghan JP (2017) Corticosterone primes the neuroinflammatory response to Gulf War Illness-relevant organophosphates independently of acetylcholinesterase inhibition. J Neurochem 142(3):444–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. O’Callaghan JP, Kelly KA, Locker AR, Miller DB, Lasley SM (2015) Corticosterone primes the neuroinflammatory response to DFP in mice: potential animal model of Gulf War Illness. J Neurochem 133(5):708–721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Dursa EK, Barth SK, Schneiderman AI, Bossarte RM (2016) Physical and mental health status of Gulf War and Gulf Era veterans: results from a large population-based epidemiological study. J Occup Environ Med 58(1):41–46

    Article  PubMed  Google Scholar 

  21. Fukuda K, Nisenbaum R, Stewart G, Thompson WW, Robin L, Washko RM, Noah DL, Barrett DH, Randall B, Herwaldt BL, Mawle AC, Reeves WC (1998) Chronic multisymptom illness affecting Air Force veterans of the Gulf War. JAMA 280(11):981–988

    Article  CAS  PubMed  Google Scholar 

  22. White RF, Steele L, O’Callaghan JP, Sullivan K, Binns JH, Golomb BA, Bloom FE, Bunker JA, Crawford F, Graves JC, Hardie A, Klimas N, Knox M, Meggs WJ, Meling J, Philbert MA, Grashow R (2016) Recent research on Gulf War illness and other health problems in veterans of the 1991 Gulf War: effects of toxicant exposures during deployment. Cortex 74:449–475

    Article  PubMed  Google Scholar 

  23. Heaton KJ, Palumbo CL, Proctor SP, Killiany RJ, Yurgelun-Todd DA, White RF (2007) Quantitative magnetic resonance brain imaging in US army veterans of the 1991 Gulf War potentially exposed to sarin and cyclosarin. Neurotoxicology 28(4):761–769

    Article  CAS  PubMed  Google Scholar 

  24. Chao LL, Rothlind JC, Cardenas VA, Meyerhoff DJ, Weiner MW (2010) Effects of low-level exposure to sarin and cyclosarin during the 1991 Gulf War on brain function and brain structure in US veterans. Neurotoxicology 31(5):493–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Perretta G, Righi FR, Gozzo S (1993) Neuropathological and behavioral toxicology of trimethyltin exposure. Ann Ist Super Sanita 29(1):167–174

    CAS  PubMed  Google Scholar 

  26. Giovanni A, Sieber BA, Heikkila RE, Sonsalla PK (1994) Studies on species sensitivity to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Part 1: systemic administration. J Pharmacol Exp Ther 270(3):1000–1007

    CAS  PubMed  Google Scholar 

  27. Ichiyama T, Nishikawa M, Lipton JM, Matsubara T, Takashi H, Furukawa S (2001) Thiopental inhibits NF-kappaB activation in human glioma cells and experimental brain inflammation. Brain Res 911(1):56–61

    Article  CAS  PubMed  Google Scholar 

  28. National Research Council (US) Committee on Recognition and Alleviation of Pain in Laboratory Animals (2009) Recognition and alleviation of pain in laboratory animals. National Academies Press (US), Washington, D.C. 4, Effective Pain Management

    Google Scholar 

  29. O’Callaghan JP, Sriram K (2004) Focused microwave irradiation of the brain preserves in vivo protein phosphorylation: comparison with other methods of sacrifice and analysis of multiple phosphoproteins. J Neurosci Methods 135(1–2):159–168

    Article  CAS  PubMed  Google Scholar 

  30. Doyle JP, Dougherty JD, Heiman M, Schmidt EF, Stevens TR, Ma G, Bupp S, Shrestha P, Shah RD, Doughty ML, Gong S, Greengard P, Heintz N (2008) Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135:749–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Heiman M, Schaefer A, Gong S, Peterson JD, Day M, Ramsey KE, Suárez-Fariñas M, Schwarz C, Stephan DA, Surmeier DJ, Greengard P, Heintz N (2008) A translational profiling approach for the molecular characterization of CNS cell types. Cell 135:738–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dougherty JD, Schmidt EF, Nakajima M, Heintz N (2010) Analytical approaches to RNA profiling data for the identification of genes enriched in specific cells. Nucleic Acids Res 38:4218–4230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Heiman M, Kulicke R, Fenster RJ, Greengard P, Heintz N (2014) Cell type-specific mRNA purification by translating ribosome affinity purification (TRAP). Nat Protoc 9:1282–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. O’Callaghan JP (1991) Quantification of glial fibrillary acidic protein: comparison of slot-immunobinding assays with a novel sandwich ELISA. Neurtoxicol Teratol 13(3):275–281

    Article  Google Scholar 

  35. O’Callaghan JP (2002) Measurement of glial fibrillary acidic protein. In: Maines MD, Costa LG, Hodgson E, Reed DJ, Sipes IG (eds) Current protocols in toxicology. Wiley, New York. Sections 12.8.1–12.8.12

    Google Scholar 

  36. O’Callaghan JP, Sriram K (2005) Glial fibrillary acidic protein and related glial proteins as biomarkers for neurotoxicity. Expert Opin Drug Saf 4(3):433–442

    Article  PubMed  Google Scholar 

  37. O’Callaghan JP, Kelly KA, VanGilder RL, Sofroniew MV, Miller DB (2014) Early activation of STAT3 regulates reactive astrogliosis induced by diverse forms of neurotoxicity. PLoS One 9(7):e102003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Sriram K, Benkovic SA, Hebert MA, Miller DB, O’Callaghan JP (2004) Induction of gp130-related cytokines and activation of JAK/STAT3 pathway in astrocytes precedes up-regulation of glial fibrillary acidic protein in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of neurodegeneration: key signaling pathway for astrogliosis in vivo? J Biol Chem 279:19936–19947

    Article  CAS  PubMed  Google Scholar 

  39. Chew LJ, DeBoy CA, Senatorov VV Jr (2014) Finding degrees of separation: experimental approaches for astroglial and oligodendroglial cell isolation and genetic targeting. J Neurosci Methods 236:125–147

    Article  PubMed  Google Scholar 

  40. Sloan SA, Barres BA (2018) Assembling a cellular user manual for the brain. J Neurosci 38(13):3149–3153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bellesi M, de Vivo L, Tononi G, Cirelli C (2015a) Transcriptome profiling of sleeping, waking, and sleep deprived adult heterozygous Aldh1L1-eGFP-L10a mice. Genom Data 6:114–117

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bellesi M, De Vivo L, Tononi G, Cirelli C (2015b) Effects of sleep and wake on astrocytes: clues from molecular and ultrastructural studies. BMC Biol 13:66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Boulay AC, Saubaméa B, Adam N, Chasseigneaux S, Mazaré N, Gilbert A, Bahin M, Bastianelli L, Blugeon C, Perrin S, Pouch J, Ducos B, Le Crom S, Genovesio A, Chrétien F, Declèves X, Laplanche JL, Cohen-Salmon M (2017) Translation in astrocyte distal processes sets molecular heterogeneity at the gliovascular interface. Cell Discov 3:17005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Morel L, Chiang MSR, Higashimori H, Shoneye T, Iyer LK, Yelick J, Tai A, Yang Y (2017) Molecular and functional properties of regional astrocytes in the adult brain. J Neurosci 37(36):8706–8717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sakers K, Lake AM, Khazanchi R, Ouwenga R, Vasek MJ, Dani A, Dougherty JD (2017) Astrocytes locally translate transcripts in their peripheral processes. Proc Natl Acad Sci U S A 114(19):E3830–E3838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Boutej H, Rahimian R, Thammisetty SS, Béland LC, Lalancette-Hébert M, Kriz J (2017) Diverging mRNA and protein networks in activated microglia reveal SRSF3 suppresses translation of highly upregulated innate immune transcripts. Cell Rep 21(11):3220–3233

    Article  CAS  PubMed  Google Scholar 

  47. Samanani S, Mishra M, Silva C, Verhaeghe B, Wang J, Tong J, Yong VW (2013) Screening for inhibitors of microglia to reduce neuroinflammation. CNS Neurol Disord Drug Targets 12(6):741–749

    Article  CAS  PubMed  Google Scholar 

  48. Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT, Sheridan JF, Godbout JP (2008) Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J Neuroinflammation 5:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Möller T, Bard F, Bhattacharya A, Biber K, Campbell B, Dale E, Eder C, Gan L, Garden GA, Hughes ZA, Pearse DD, Staal RG, Sayed FA, Wes PD, Boddeke HW (2016) Critical data-based re-evaluation of minocycline as a putative specific microglia inhibitor. Glia 64(10):1788–1794

    Article  PubMed  Google Scholar 

  50. Elmore MR, Lee RJ, West BL, Green KN (2015) Characterizing newly repopulated microglia in the adult mouse: impacts on animal behavior, cell morphology, and neuroinflammation. PLoS One 10(4):e0122912

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, Kitazawa M, Matusow B, Nguyen H, West BL, Green KN (2014) Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82(2):380–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rice RA, Spangenberg EE, Yamate-Morgan H, Lee RJ, Arora RP, Hernandez MX, Tenner AJ, West BL, Green KN (2015) Elimination of microglia improves functional outcomes following extensive neuronal loss in the hippocampus. J Neurosci 35(27):9977–9989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dagher NN, Najafi AR, Kayala KM, Elmore MR, White TE, Medeiros R, West BL, Green KN (2015) Colony-stimulating factor 1 receptor inhibition prevents microglial plaque association and improves cognition in 3xTg-AD mice. J Neuroinflammation 12:139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Szalay G, Martinecz B, Lénárt N, Környei Z, Orsolits B, Judák L, Császár E, Fekete R, West BL, Katona G, Rózsa B, Dénes Á (2016) Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat Commun 7:11499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Spangenberg EE, Lee RJ, Najafi AR, Rice RA, Elmore MR, Blurton-Jones M, West BL, Green KN (2016) Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-β pathology. Brain 139(Pt 4):1265–1281

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rice RA, Pham J, Lee RJ, Najafi AR, West BL, Green KN (2017) Microglia repopulation resolves inflammation and promotes brain recover after injury. Glia 65(6):931–944

    Article  PubMed  PubMed Central  Google Scholar 

  57. Staniland AA, Clark AK, Wodarski R, Sasso O, Maione F, D’Acquisto F, Malcangio M (2010) Reduced inflammatory and neuropathic pain and decreased spinal microglial response in fractalkine receptor (CX3CR1) knockout mice. J Neurochem 114(4):1143–1157

    CAS  PubMed  Google Scholar 

  58. Cho SH, Sun B, Zhou Y, Kauppinen TM, Halabisky B, Wes P, Ransohoff RM, Gan L (2011) CX3CR1 protein signaling modulates microglial activation an protects against plaque-independent cognitive deficits in a mouse model of Alzheimer disease. J Biol Chem 286(37):32713–32722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mattison HA, Nie H, Gao H, Zhou H, Hong JS, Zhang J (2013) Suppressed pro-inflammatory response of microglia in CX3CR1 knockout mice. J Neuroimmunol 257(1–2):110–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Milior G, Lecours C, Samson L, Bisht K, Poggini S, Pagani F, Deflorio C, Lauro C, Alboni S, Limatola C, Branchi I, Tremblay ME, Maggi L (2016) Fractalkine receptor deficiency impairs microglial and neuronal responsiveness to chronic stress. Brain Behav Immun 55:114–125

    Article  CAS  PubMed  Google Scholar 

  61. van der Maten G, Henck V, Wieloch T, Ruscher K (2017) CX3C chemokine receptor 1 deficiency modulates microglia morphology but does not affect lesion size and short-term deficits after experimental stroke. BMC Neurosci 18(1):11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindsay T. Michalovicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Michalovicz, L.T., O’Callaghan, J.P. (2019). Glial Reactivity in Response to Neurotoxins: Relevance and Methods. In: Aschner, M., Costa, L. (eds) Cell Culture Techniques. Neuromethods, vol 145. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9228-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9228-7_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9227-0

  • Online ISBN: 978-1-4939-9228-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics