Skip to main content

Oxidative Stress Signatures in Human Stem Cell-Derived Neurons

  • Protocol
  • First Online:
Cell Culture Techniques

Part of the book series: Neuromethods ((NM,volume 145))

  • 1253 Accesses

Abstract

Compelling evidence suggests that oxidative stress plays a significant role in the pathogenesis of many neurodegenerative diseases as well as the neuronal/glial demise resulting from exposure to environmental stressors. The cellular redox balance is maintained by a host of cellular redox systems with set points that are regulated at a subcellular level. Overwhelming deviations of these redox system balances result in oxidative stress and ultimately deficient functioning of cellular organelles and biomolecules such as protein, lipids, and nucleic acids. The analysis of cellular and subcellular redox states is challenging due to the spatiotemporal compartmentation of redox systems and the cell type, stressor, and exposure paradigm specificity of the responses to a particular insult. Due to this complexity, multiple approaches to examine the presence and nature of oxidative stress in biological systems can be used to enhance rigor and may include the analysis of the level of reactive oxygen/nitrogen species (RONS) present, the evaluation of cellular redox systems, and the modification of biomolecules. We describe here three such methods applied to stem cell-derived neurons: (1) the chloromethyl 2′, 7′-dichlorodihydrofluorescein diacetate (DCF) assay to assess cellular RONS levels, (2) a method to determine the state of the cellular GSH redox system, and (3) a procedure to assess oxidative stress-induced lipid modification. This multifold approach to assess the cellular redox state can establish an “oxidative stress signature” specific for a stressor, a cell type, and exposure paradigm. This threefold approach allows for a better comparison of how different biological systems react to a particular stressor or how different stressors (or exposure paradigms) affect a particular biological model system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53(Suppl 3):S26–S36; discussion S36–28. https://doi.org/10.1002/ana.10483

  2. Multhaup G, Ruppert T, Schlicksupp A, Hesse L, Beher D, Masters CL, Beyreuther K (1997) Reactive oxygen species and Alzheimer’s disease. Biochem Pharmacol 54(5):533–539

    Article  CAS  PubMed  Google Scholar 

  3. Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7(1):65–74. https://doi.org/10.2174/157015909787602823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guo JD, Zhao X, Li Y, Li GR, Liu XL (2018) Damage to dopaminergic neurons by oxidative stress in Parkinson’s disease (review). Int J Mol Med 41(4):1817–1825. https://doi.org/10.3892/ijmm.2018.3406

    Article  CAS  PubMed  Google Scholar 

  5. Puspita L, Chung SY, Shim JW (2017) Oxidative stress and cellular pathologies in Parkinson’s disease. Mol Brain 10(1):53. https://doi.org/10.1186/s13041-017-0340-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ren X, Zou L, Zhang X, Branco V, Wang J, Carvalho C, Holmgren A, Lu J (2017) Redox signaling mediated by thioredoxin and glutathione systems in the central nervous system. Antioxid Redox Signal 27(13):989–1010. https://doi.org/10.1089/ars.2016.6925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Angelova PR, Abramov AY (2018) Role of mitochondrial ROS in the brain: from physiology to neurodegeneration. FEBS Lett 592(5):692–702. https://doi.org/10.1002/1873-3468.12964

    Article  CAS  PubMed  Google Scholar 

  8. Gandhi S, Abramov AY (2012) Mechanism of oxidative stress in neurodegeneration. Oxidative Med Cell Longev 2012:428010. https://doi.org/10.1155/2012/428010

    Article  CAS  Google Scholar 

  9. Grimm S, Hoehn A, Davies KJ, Grune T (2011) Protein oxidative modifications in the ageing brain: consequence for the onset of neurodegenerative disease. Free Radic Res 45(1):73–88. https://doi.org/10.3109/10715762.2010.512040

    Article  CAS  PubMed  Google Scholar 

  10. Browne SE, Ferrante RJ, Beal MF (1999) Oxidative stress in Huntington’s disease. Brain Pathol 9(1):147–163

    Article  CAS  PubMed  Google Scholar 

  11. Jones DP, Sies H (2015) The redox code. Antioxid Redox Signal 23(9):734–746. https://doi.org/10.1089/ars.2015.6247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–183. https://doi.org/10.1016/j.redox.2015.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sies H, Berndt C, Jones DP (2017) Oxidative stress. Annu Rev Biochem 86:715–748. https://doi.org/10.1146/annurev-biochem-061516-045037

    Article  CAS  PubMed  Google Scholar 

  14. Herrmann JM, Dick TP (2012) Redox biology on the rise. Biol Chem 393(9):999–1004. https://doi.org/10.1515/hsz-2012-0111

    Article  CAS  PubMed  Google Scholar 

  15. Comini MA (2016) Measurement and meaning of cellular thiol: disulfide redox status. Free Radic Res 50(2):246–271. https://doi.org/10.3109/10715762.2015.1110241

    Article  CAS  PubMed  Google Scholar 

  16. Neely MD, Davison CA, Aschner M, Bowman AB (2017) From the cover: manganese and rotenone-induced oxidative stress signatures differ in iPSC-derived human dopamine neurons. Toxicol Sci 159(2):366–379. https://doi.org/10.1093/toxsci/kfx145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bornhorst J, Meyer S, Weber T, Boker C, Marschall T, Mangerich A, Beneke S, Burkle A, Schwerdtle T (2013) Molecular mechanisms of Mn induced neurotoxicity: RONS generation, genotoxicity, and DNA-damage response. Mol Nutr Food Res 57(7):1255–1269. https://doi.org/10.1002/mnfr.201200758

    Article  CAS  PubMed  Google Scholar 

  18. Kumar KK, Lowe EW Jr, Aboud AA, Neely MD, Redha R, Bauer JA, Odak M, Weaver CD, Meiler J, Aschner M, Bowman AB (2014) Cellular manganese content is developmentally regulated in human dopaminergic neurons. Sci Rep 4:6801. doi:srep06801 [pii]. https://doi.org/10.1038/srep06801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Desole MS, Esposito G, Migheli R, Sircana S, Delogu MR, Fresu L, Miele M, de Natale G, Miele E (1997) Glutathione deficiency potentiates manganese toxicity in rat striatum and brainstem and in PC12 cells. Pharmacol Res 36(4):285–292. doi:S1043-6618(97)90197-3 [pii]. https://doi.org/10.1006/phrs.1997.0197

    Article  CAS  PubMed  Google Scholar 

  20. Neely MD, Litt MJ, Tidball AM, Li GG, Aboud AA, Hopkins CR, Chamberlin R, Hong CC, Ess KC, Bowman AB (2012) DMH1, a highly selective small molecule BMP inhibitor promotes neurogenesis of hiPSCs: comparison of PAX6 and SOX1 expression during neural induction. ACS Chem Neurosci 3(6):482–491. (PMC888888). https://doi.org/10.1021/cn300029t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27(3):275–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, Carrillo-Reid L, Auyeung G, Antonacci C, Buch A, Yang L, Beal MF, Surmeier DJ, Kordower JH, Tabar V, Studer L (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480(7378):547–551. doi:nature10648 [pii]. https://doi.org/10.1038/nature10648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shi Y, Kirwan P, Livesey FJ (2012) Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protocol 7(10):1836–1846. https://doi.org/10.1038/nprot.2012.116

    Article  CAS  Google Scholar 

  24. Meacham CA, Freudenrich TM, Anderson WL, Sui L, Lyons-Darden T, Barone S Jr, Gilbert ME, Mundy WR, Shafer TJ (2005) Accumulation of methylmercury or polychlorinated biphenyls in in vitro models of rat neuronal tissue. Toxicol Appl Pharmacol 205(2):177–187. https://doi.org/10.1016/j.taap.2004.08.024

    Article  CAS  PubMed  Google Scholar 

  25. Hennings L, Kaufmann Y, Griffin R, Siegel E, Novak P, Corry P, Moros EG, Shafirstein G (2009) Dead or alive? Autofluorescence distinguishes heat-fixed from viable cells. Int J Hyperthermia Off J Eur Soc Hyperthermic Oncol N Am Hyperthermia Group 25(5):355–363. https://doi.org/10.1080/02656730902964357

    Article  Google Scholar 

  26. Winterbourn CC (2014) The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochim Biophys Acta 1840(2):730–738. https://doi.org/10.1016/j.bbagen.2013.05.004

    Article  CAS  PubMed  Google Scholar 

  27. Pacifici RE, Davies KJ (1991) Protein, lipid and DNA repair systems in oxidative stress: the free-radical theory of aging revisited. Gerontology 37(1–3):166–180. https://doi.org/10.1159/000213257

    Article  CAS  PubMed  Google Scholar 

  28. Cotgreave IA, Gerdes RG (1998) Recent trends in glutathione biochemistry – glutathione-protein interactions: a molecular link between oxidative stress and cell proliferation? Biochem Biophys Res Commun 242(1):1–9. https://doi.org/10.1006/bbrc.1997.7812

    Article  CAS  PubMed  Google Scholar 

  29. Dringen R, Gutterer JM, Hirrlinger J (2000) Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem 267(16):4912–4916

    Article  CAS  PubMed  Google Scholar 

  30. Griffith OW (1982) Mechanism of action, metabolism, and toxicity of buthionine sulfoximine and its higher homologs, potent inhibitors of glutathione synthesis. J Biol Chem 257(22):13704–13712

    CAS  PubMed  Google Scholar 

  31. Griffith OW, Meister A (1979) Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol Chem 254(16):7558–7560

    CAS  PubMed  Google Scholar 

  32. Neely MD, Boutte A, Milatovic D, Montine TJ (2005) Mechanisms of 4-hydroxynonenal-induced neuronal microtubule dysfunction. Brain Res 1037(1–2):90–98. doi:S0006-8993(04)01950-X [pii]. https://doi.org/10.1016/j.brainres.2004.12.027

    Article  CAS  PubMed  Google Scholar 

  33. Aquilano K, Baldelli S, Cardaci S, Rotilio G, Ciriolo MR (2011) Nitric oxide is the primary mediator of cytotoxicity induced by GSH depletion in neuronal cells. J Cell Sci 124(Pt 7):1043–1054. https://doi.org/10.1242/jcs.077149

    Article  CAS  PubMed  Google Scholar 

  34. Cadet J, Davies KJA, Medeiros MH, Di Mascio P, Wagner JR (2017) Formation and repair of oxidatively generated damage in cellular DNA. Free Radic Biol Med 107:13–34. https://doi.org/10.1016/j.freeradbiomed.2016.12.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Davies KJ (2001) Degradation of oxidized proteins by the 20S proteasome. Biochimie 83(3–4):301–310

    Article  CAS  PubMed  Google Scholar 

  36. Reed TT (2011) Lipid peroxidation and neurodegenerative disease. Free Radic Biol Med 51(7):1302–1319. https://doi.org/10.1016/j.freeradbiomed.2011.06.027

    Article  CAS  PubMed  Google Scholar 

  37. Montine TJ, Neely MD, Quinn JF, Beal MF, Markesbery WR, Roberts LJ, Morrow JD (2002) Lipid peroxidation in aging brain and Alzheimer’s disease. Free Radic Biol Med 33(5):620–626. doi:S0891584902008079 [pii].

    Article  CAS  PubMed  Google Scholar 

  38. Pratico D (2010) The neurobiology of isoprostanes and Alzheimer’s disease. Biochim Biophys Acta 1801(8):930–933. https://doi.org/10.1016/j.bbalip.2010.01.009

    Article  CAS  PubMed  Google Scholar 

  39. Miller E, Morel A, Saso L, Saluk J (2014) Isoprostanes and neuroprostanes as biomarkers of oxidative stress in neurodegenerative diseases. Oxidative Med Cell Longev 2014:572491. https://doi.org/10.1155/2014/572491

    Article  CAS  Google Scholar 

  40. Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, Roberts LJ 2nd (1990) A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci U S A 87(23):9383–9387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kayganich-Harrison KA, Rose DM, Murphy RC, Morrow JD, Roberts LJ 2nd (1993) Collision-induced dissociation of F2-isoprostane-containing phospholipids. J Lipid Res 34(7):1229–1235

    CAS  PubMed  Google Scholar 

  42. Stafforini DM, Sheller JR, Blackwell TS, Sapirstein A, Yull FE, McIntyre TM, Bonventre JV, Prescott SM, Roberts LJ 2nd (2006) Release of free F2-isoprostanes from esterified phospholipids is catalyzed by intracellular and plasma platelet-activating factor acetylhydrolases. J Biol Chem 281(8):4616–4623. https://doi.org/10.1074/jbc.M507340200

    Article  CAS  PubMed  Google Scholar 

  43. Milne GL, Dai Q, Roberts LJ 2nd (2015) The isoprostanes – 25 years later. Biochim Biophys Acta 1851(4):433–445. doi:S1388-1981(14)00216-9 [pii]. https://doi.org/10.1016/j.bbalip.2014.10.007

    Article  CAS  PubMed  Google Scholar 

  44. Milne GL, Yin H, Hardy KD, Davies SS, Roberts LJ 2nd (2011) Isoprostane generation and function. Chem Rev 111(10):5973–5996. https://doi.org/10.1021/cr200160h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. D’Autreaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8(10):813–824. https://doi.org/10.1038/nrm2256

    Article  CAS  PubMed  Google Scholar 

  46. Galvani P, Fumagalli P, Santagostino A (1995) Vulnerability of mitochondrial complex I in PC12 cells exposed to manganese. Eur J Pharmacol 293(4):377–383

    Article  CAS  PubMed  Google Scholar 

  47. Xiong N, Huang J, Chen C, Zhao Y, Zhang Z, Jia M, Hou L, Yang H, Cao X, Liang Z, Zhang Y, Sun S, Lin Z, Wang T (2012) Dl-3-n-butylphthalide, a natural antioxidant, protects dopamine neurons in rotenone models for Parkinson’s disease. Neurobiol Aging 33(8):1777–1791. doi:S0197-4580(11)00079-0 [pii]. https://doi.org/10.1016/j.neurobiolaging.2011.03.007

    Article  CAS  PubMed  Google Scholar 

  48. Zhang S, Fu J, Zhou Z (2004) In vitro effect of manganese chloride exposure on reactive oxygen species generation and respiratory chain complexes activities of mitochondria isolated from rat brain. Toxicol In Vitro 18(1):71–77. doi:S0887233303001632 [pii].

    Article  PubMed  Google Scholar 

  49. Degli Esposti M (1998) Inhibitors of NADH-ubiquinone reductase: an overview. Biochim Biophys Acta 1364(2):222–235

    Article  CAS  PubMed  Google Scholar 

  50. Milatovic D, Montine TJ, Aschner, M (2011) Measurement of isoprostanes as markers of oxidative stress. Methods Mol Biol 758:195–204

    Google Scholar 

  51. Milne GL, Gao B, Terry ES, Zackert WE, Sanchez, SC (2013) Measurement of F2-isoprostanes and isofurans using gas chromatography-mass spectrometry. Free Radic Biol Med 59:36–44

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH NIEHS RO1 ES016931 (ABB) and ES010563 (ABB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Diana Neely .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Neely, M.D., Bowman, A.B. (2019). Oxidative Stress Signatures in Human Stem Cell-Derived Neurons. In: Aschner, M., Costa, L. (eds) Cell Culture Techniques. Neuromethods, vol 145. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9228-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9228-7_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9227-0

  • Online ISBN: 978-1-4939-9228-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics