Skip to main content

miRNA as a Marker for In Vitro Neurotoxicity Testing and Related Neurological Disorders

  • Protocol
  • First Online:
Cell Culture Techniques

Part of the book series: Neuromethods ((NM,volume 145))

Abstract

miRNA (miRNAs) are small noncoding RNA molecules, which bind to the 3′UTR of target mRNA and thereby posttranscriptionally regulate gene expression. Thus, miRNA are important fine-tuners of essential processes in the body. In the brain, they regulate neural development and brain homeostasis. Studying miRNA profiling in combination with whole genome transcriptomics after toxicant exposure is a prime way to derive molecular signatures of toxicity. This gives an insight into molecular network perturbations, which underlie systems toxicology. miRNA encapsulated into extracellular vesicles are released into biofluids and in case of in vitro systems into the culture medium as means of intercellular communication but also in response to environmental stress. In addition, miRNA are released into the circulation upon organ injury. Thus, circulating miRNA may serve as potential biomarkers of (brain) injury/toxicity. In this chapter, the importance of miRNA for neural development, neurotoxicity, and neurodegeneration is discussed; the critical steps of miRNA profiling in tissues/cells as well as in biofluids are described; the challenges and options of bioinformatic data analysis are deliberated. The focus of this chapter is on the quality control of miRNA profiling methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157

    Article  CAS  PubMed  Google Scholar 

  2. Li X, Jin P (2010) Roles of small regulatory RNAs in determining neuronal identity. Nat Publ Group 11:329–338

    CAS  Google Scholar 

  3. Giraldez AJ, Cinalli RM, Glasner ME et al (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308:833–838

    Article  CAS  PubMed  Google Scholar 

  4. Huang TT, Liu YY, Huang MM et al (2010) Wnt1-cre-mediated conditional loss of Dicer results in malformation of the midbrain and cerebellum and failure of neural crest and dopaminergic differentiation in mice. J Mol Cell Biol 2:152–163

    Article  CAS  PubMed  Google Scholar 

  5. Conaco C, Otto S, Han JJ et al (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci U S A 103:2422–2427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao C, Sun G, Li S et al (2009) A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol 16:365–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tarantino C, Paolella G, Cozzuto L et al (2010) miRNA 34a, 100, and 137 modulate differentiation of mouse embryonic stem cells. FASEB 24:3255–3263

    Article  CAS  Google Scholar 

  8. Szulwach KE, Li X, Smrt RD et al (2010) Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J Cell Biol 189:127–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schratt GM, Tuebing F, Nigh EA et al (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283–289

    Article  CAS  PubMed  Google Scholar 

  10. Siegel G, Obernosterer G, Fiore R et al (2009) A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nat Cell Biol 11:705–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Edbauer D, Neilson JR, Foster KA et al (2010) Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65:373–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weber JA, Baxter DH, Zhang S et al (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56:1733–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang KK, Yuan YY, Li HH et al (2013) The spectrum of circulating RNA: a window into systems toxicology. Toxicol Sci 132:478–492

    Article  CAS  PubMed  Google Scholar 

  14. De Smaele E, Ferretti E, Gulino A (2010) MicroRNAs as biomarkers for CNS cancer and other disorders. Brain Res 1338:100–111

    Article  PubMed  CAS  Google Scholar 

  15. CDC Report (2018) Prevalence of autism spectrum disorder among children aged 8 years — Autism and Developmental Disabilities Monitoring Network Surveillance Summaries. Morb Mortal Wkly Rep 67(6):1–23

    Google Scholar 

  16. Nikolaos Mellios MS (2012) The emerging role of microRNAs in schizophrenia and autism spectrum disorders. Front Psych 3:39

    Google Scholar 

  17. Abu-Elneel K, Liu T, Gazzaniga FS et al (2008) Heterogeneous dysregulation of microRNAs across the autism spectrum. Neurogenetics 9:153–161

    Article  CAS  PubMed  Google Scholar 

  18. Persico AM, Napolioni V (2013) Autism genetics. Behav Brain Res 251:95–112

    Article  PubMed  Google Scholar 

  19. Landrigan PJ (2010) What causes autism? Exploring the environmental contribution. Curr Opin Pediatr 22:219–225

    Article  PubMed  Google Scholar 

  20. Kuwagata M, Ogawa T, Shioda S et al (2009) Observation of fetal brain in a rat valproate-induced autism model: a developmental neurotoxicity study. Int J Dev Neurosci 27:399–405

    Article  CAS  PubMed  Google Scholar 

  21. Geier DA, Kern JK, Garver CR et al (2009) Biomarkers of environmental toxicity and susceptibility in autism. J Neurol Sci 280:101–108

    Article  CAS  PubMed  Google Scholar 

  22. Kim J, Inoue K, Ishii J et al (2007) A MicroRNA feedback circuit in midbrain dopamine neurons. Science 317:1220–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Leucht C, Stigloher C, Wizenmann A et al (2008) MicroRNA-9 directs late organizer activity of the midbrain-hindbrain boundary. Nat Neurosci 11:641–648

    Article  CAS  PubMed  Google Scholar 

  24. Yang D, Li T, Wang Y et al (2012) miR-132 regulates the differentiation of dopamine neurons by directly targeting Nurr1 expression. J Cell Sci 125:1673–1682

    CAS  PubMed  Google Scholar 

  25. Kim JH, Auerbach JM, Rodriguez-Gomez JA et al (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418:50–56

    Article  CAS  PubMed  Google Scholar 

  26. Lau P, de Strooper B (2010) Dysregulated microRNAs in neurodegenerative disorders. Semin Cell Dev Biol 21(7):768–773

    Google Scholar 

  27. Junn E, Lee K-W, Jeong BS et al (2009) Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci U S A 106:13052–13057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mouradian MM (2012) MicroRNAs in Parkinson’s disease. Neurobiol Dis 46:279–284

    Article  CAS  PubMed  Google Scholar 

  29. Smirnova L, Harris G, Delp J, et al (2016) A LUHMES 3D dopaminergic neuronal model for neurotoxicity testing allowing long-term exposure and cellular resilience analysis. Arch Toxicol 90:2725–2743

    Google Scholar 

  30. Chaudhuri AD, Choi DC, Kabaria S et al (2016) MicroRNA-7 regulates the function of mitochondrial permeability transition pore by targeting VDAC1. J Biol Chem 291(12):6483–6493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chaudhuri AD, Kabaria S, Choi DC et al (2015) MicroRNA-7 promotes glycolysis to protect against 1-methyl-4-phenylpyridinium-induced cell death. J Biol Chem 290:12425–12434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fragkouli A, Doxakis E (2014) miR-7 and miR-153 protect neurons against MPP(+)-induced cell death via upregulation of mTOR pathway. Front Cell Neurosci 8:182–182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Li P, Jiao J, Gao G et al (2012) Control of mitochondrial activity by miRNAs. J Cell Biochem 113:1104–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chan YC, Banerjee J, Choi SY et al (2012) miR-210: the master hypoxamir. Microcirculation 19:215–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim JH, Park SG, Song S-Y et al (2013) Reactive oxygen species-responsive miR-210 regulates proliferation and migration of adipose-derived stem cells via PTPN2. Cell Death Dis 4:e588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xiong L, Wang F, Huang X et al (2012) DNA demethylation regulates the expression of miR-210 in neural progenitor cells subjected to hypoxia. FEBS J 279:4318–4326

    Article  CAS  PubMed  Google Scholar 

  37. Aschrafi A, Schwechter AD, Mameza MG et al (2008) MicroRNA-338 regulates local cytochrome c oxidase IV mRNA levels and oxidative phosphorylation in the axons of sympathetic neurons. J Neurosci 28:12581–12590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bandiera S, Matégot R, Girard M et al (2013) MitomiRs delineating the intracellular localization of microRNAs at mitochondria. Free Radicol Biol Med 64:12–19

    Article  CAS  Google Scholar 

  39. Smirnova L, Sittka A, Luch A (2012) On the role of low-dose effects and epigenetics in toxicology. EXS 101:499–550

    PubMed  Google Scholar 

  40. Smirnova L, Block K, Sittka A et al (2014) MicroRNA profiling as tool for in vitro developmental neurotoxicity testing: the case of sodium valproate. PLoS One 9:e98892–e98892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Pallocca G, Fabbri M, Sacco MG et al (2013) miRNA expression profiling in a human stem cell-based model as a tool for developmental neurotoxicity testing. Cell Biol Toxicol 29:239–257

    Article  CAS  PubMed  Google Scholar 

  42. Liu C, Zhao X (2009) MicroRNAs in adult and embryonic neurogenesis. NeuroMolecular Med 11:141–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu X, Song Y (2011) Preferential regulation of miRNA targets by environmental chemicals in the human genome. BMC Genomics 12:244

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  45. de Rie D, Abugessaisa I, Alam T et al (2017) An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat Biotechnol 35:872–878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Pamies D, Hartung T (2017) 21st century cell culture for 21st century toxicology. Chem Res Toxicol 30:43–52

    Article  CAS  PubMed  Google Scholar 

  47. Paşca AM, Sloan SA, Clarke LE et al (2015) Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Chem Biol 12:671–678

    Google Scholar 

  48. Lancaster MA, Renner M, Martin C-A et al (2013) Cerebral organoids model human brain development and microcephaly. Nature 501:373–379

    Article  CAS  PubMed  Google Scholar 

  49. Alépée N, Bahinski A, Daneshian M et al (2014) State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. Altex 31:441–477

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kleensang A, Maertens A, Rosenberg M et al (2014) t4 workshop report: pathways of toxicity. ALTEX 31:53–61

    Article  PubMed  Google Scholar 

  51. Hartung T, McBride M (2011) Food for thought ... On mapping the human toxome. ALTEX 28:83–93

    Article  PubMed  Google Scholar 

  52. Rybak A, Fuchs H, Smirnova L et al (2008) A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol 10:987–993

    Article  CAS  PubMed  Google Scholar 

  53. Smirnova L, Kleinstreuer N, Corvi R et al (2018) 3S – systematic, systemic, and systems biology and toxicology. ALTEX 35:139–162

    Article  PubMed  PubMed Central  Google Scholar 

  54. Smirnova L, Seiler AEM, Luch A (2015) microRNA profiling as tool for developmental neurotoxicity testing (DNT). Curr Protoc Toxicol 64:20.9.1–20.9.22

    Article  Google Scholar 

  55. Harris G, Hogberg H, Hartung T et al (2017) 3D differentiation of LUHMES cell line to study recovery and delayed neurotoxic effects. Curr Protoc Toxicol 73:11.23.1–11.23.28

    Article  CAS  Google Scholar 

  56. Potter SS (2018) Single-cell RNA sequencing for the study of development, physiology and disease, nature reviews. Nephrology 14:479–492

    CAS  PubMed  Google Scholar 

  57. Tang Y-T, Tang Y-T, Huang Y-Y et al (2017) Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. Int J Mol Med 40:834–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bhome R, Del Vecchio F, Lee GH et al (2018) Exosomal microRNAs (exomiRs): small molecules with a big role in cancer. Cancer Lett 420:228–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mustapic M, Eitan E, Werner JK et al (2017) Plasma extracellular vesicles enriched for neuronal origin: a potential window into brain pathologic processes. Front Neurosci 11:278

    Article  PubMed  PubMed Central  Google Scholar 

  60. Marx U, Andersson TB, Bahinski A et al (2016) Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. ALTEX 33:272–321

    PubMed  PubMed Central  Google Scholar 

  61. Witwer KW (2015) Circulating microRNA biomarker studies: pitfalls and potential solutions. Clin Chem 61:56–63

    Article  CAS  PubMed  Google Scholar 

  62. Pritchard CC, Cheng HH, Tewari M (2012) MicroRNA profiling: approaches and considerations. Nat Rev Genet 13:358–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim S, Park J, Na J et al (2016) Simultaneous determination of multiple microRNA levels utilizing biotinylated dideoxynucleotides and mass spectrometry. PLoS One 11:e0153201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Liu L, Xu Q, Hao S et al (2017) A quasi-direct LC-MS/MS-based targeted proteomics approach for miRNA quantification via a covalently immobilized DNA-peptide probe. Sci Rep 7:5669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Schwarzenbach H, da Silva AM, Calin G et al (2015) Data normalization strategies for MicroRNA quantification. Clin Chem 61:1333–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schmittgen TDT, Livak KJK (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  67. Lai EC, Tomancak P, Williams RW et al (2003) Computational identification of Drosophila microRNA genes. Genome Biol 4:R42

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lim LP, Lau NC, Weinstein EG et al (2003) The microRNAs of Caenorhabditis elegans. Genes Dev 17:991–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kadri S, Hinman V, Benos PV (2009) HHMMiR: efficient de novo prediction of microRNAs using hierarchical hidden Markov models. BMC Bioinform 10(Suppl 1):S35

    Article  CAS  Google Scholar 

  70. Bortolomeazzi M, Gaffo E, Bortoluzzi S (2017) A survey of software tools for microRNA discovery and characterization using RNA-seq. Brief Bioinform

    Google Scholar 

  71. Bisgin H, Gong B, Wang Y et al (2018) Evaluation of bioinformatics approaches for next-generation sequencing analysis of microRNAs with a toxicogenomics study design. Front Genet 9:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Rajman M, Schratt G (2017) MicroRNAs in neural development: from master regulators to fine-tuners. Development (Cambridge, England) 144:2310–2322

    Article  CAS  Google Scholar 

  73. Strazisar M, Cammaerts S, van der Ven K et al (2015) MIR137 variants identified in psychiatric patients affect synaptogenesis and neuronal transmission gene sets. Mol Psychiatry 20:472–481

    Article  CAS  PubMed  Google Scholar 

  74. Muller H, Marzi MJ, Nicassio F (2014) IsomiRage: from functional classification to differential expression of miRNA isoforms. Front Bioeng Biotechnol 2:38

    Article  PubMed  PubMed Central  Google Scholar 

  75. Riffo-Campos ÁL, Riquelme I, Brebi-Mieville P (2016) Tools for sequence-based miRNA target prediction: what to choose? Int J Mol Sci 17:1987

    Article  CAS  PubMed Central  Google Scholar 

  76. Dweep H, Gretz N, Sticht C (2014) miRWalk database for miRNA – target interactions. In: Alvarez ML, Nourbakhsh M (eds) RNA mapping: Methods Mol Biol. 1182:289–305

    Google Scholar 

  77. Krallinger M, Valencia A, Hirschman L (2008) Linking genes to literature: text mining, information extraction, and retrieval applications for biology. Genome Biol 9(Suppl 2):S8–S8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  79. Huntley RP, Sitnikov D, Orlic-Milacic M et al (2016) Guidelines for the functional annotation of microRNAs using the gene ontology. RNA 22:667–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu B, Li J, Cairns MJ (2014) Identifying miRNAs, targets and functions. Brief Bioinform 15:1–19

    Article  PubMed  CAS  Google Scholar 

  81. Bleazard T, Lamb JA, Griffiths-Jones S (2015) Bias in microRNA functional enrichment analysis. Bioinformatics 31:1592–1598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Maertens A, Luechtefeld T, Kleensang A et al (2015) MPTP’s pathway of toxicity indicates central role of transcription factor SP1. Arch Toxicol 89:743–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Smirnova L, Gräfe A, Seiler A et al (2005) Regulation of miRNA expression during neural cell specification. Eur J Neurosci 21:1469–1477

    Article  PubMed  Google Scholar 

  84. Jin Y, Chen Z, Liu X et al (2013) Evaluating the microRNA targeting sites by luciferase reporter gene assay. Methods Mol Biol 936:117–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Aldred SF, Collins P, Trinklein N (2011) Identifying targets of human microRNAs with the LightSwitch Luciferase Assay System using 3′UTRreporter constructs and a microRNA mimic in adherent cells. J Vis Exp JoVE:28(55) e3343–e3343

    Google Scholar 

  86. Kuhn DE, Martin MM, Feldman DS et al (2008) Experimental validation of miRNA targets. Methods Companion Methods Enzymol 44:47–54

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lena Smirnova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Smirnova, L., Maertens, A. (2019). miRNA as a Marker for In Vitro Neurotoxicity Testing and Related Neurological Disorders. In: Aschner, M., Costa, L. (eds) Cell Culture Techniques. Neuromethods, vol 145. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9228-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9228-7_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9227-0

  • Online ISBN: 978-1-4939-9228-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics