Advertisement

Combinatorial siRNA Polyplexes for Receptor Targeting

  • Dian-Jang Lee
  • Ernst WagnerEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1974)

Abstract

As synthetic small interfering RNA (siRNA) against antitumoral gene targets show promise for cancer treatment, different siRNA delivery systems have sparkled intense investigations. To develop tumor-specific carriers for cytosolic and systemic siRNA delivery, our laboratory has recently generated folate-conjugated targeted combinatorial siRNA polyplexes based on sequence-defined oligomer platform compatible with solid-phase-supported synthesis. These polyplexes presented efficient siRNA-mediated gene silencing in folate receptor-expressing tumors in vitro and in vivo. In this chapter, we provide a brief background on the formulation design and detailed protocols to evaluate polyplex formation, gene silencing efficiency, and receptor-directed cell killing in cancer cells using targeted combinatorial siRNA polyplexes.

Keywords

siRNA delivery Gene silencing Polyplex Receptor targeting 

Notes

Acknowledgments

The work presented in this article was supported by German Research Foundation (DFG) grant SFB1032 (Project B4) and German Excellence Cluster Nanosystems Initiative Munich.

References

  1. 1.
    Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8:129–138CrossRefPubMedGoogle Scholar
  2. 2.
    Murrow LM et al (2010) Identification of WEE1 as a potential molecular target in cancer cells by RNAi screening of the human tyrosine kinome. Breast Cancer Res Treat 122:347–357CrossRefPubMedGoogle Scholar
  3. 3.
    Goidts V et al (2012) RNAi screening in glioma stem-like cells identifies PFKFB4 as a key molecule important for cancer cell survival. Oncogene 31:3235–3243CrossRefPubMedGoogle Scholar
  4. 4.
    Tiedemann RE et al (2010) Kinome-wide RNAi studies in human multiple myeloma identify vulnerable kinase targets, including a lymphoid-restricted kinase, GRK6. Blood 115:1594–1604CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Azorsa DO et al (2009) Synthetic lethal RNAi screening identifies sensitizing targets for gemcitabine therapy in pancreatic cancer. J Transl Med 7:43CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Haussecker D et al (2015) RNA interference. Drugging RNAi. Science 347:1069–1070CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Valentine MT et al (2006) Eg5 steps it up! Cell Div 1:31CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Judge AD et al (2009) Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice. J Clin Invest 119:661–673CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Edinger D et al (2014) Gene silencing and antitumoral effects of Eg5 or Ran siRNA oligoaminoamide polyplexes. Drug Deliv Transl Res 4:84–95CrossRefPubMedGoogle Scholar
  10. 10.
    Harborth J et al (2001) Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci 114:4557–4565PubMedGoogle Scholar
  11. 11.
    Wagner E (2012) Polymers for siRNA delivery: inspired by viruses to be targeted, dynamic, and precise. Acc Chem Res 45:1005–1013CrossRefPubMedGoogle Scholar
  12. 12.
    Klein PM, Wagner E (2014) Bioreducible polycations as shuttles for therapeutic nucleic acid and protein transfection. Antioxid Redox Signal 21:804–817CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kanasty R et al (2013) Delivery materials for siRNA therapeutics. Nat Mater 12:967–977CrossRefPubMedGoogle Scholar
  14. 14.
    Boussif O et al (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 92:7297–7301CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    De Smedt SC, Demeester J, Hennink WE (2000) Cationic polymer based gene delivery systems. Pharm Res 17:113–126CrossRefPubMedGoogle Scholar
  16. 16.
    Pack DW et al (2005) Design and development of polymers for gene delivery. Nat Rev Drug Discov 4:581–593CrossRefPubMedGoogle Scholar
  17. 17.
    Miyata K, Nishiyama N, Kataoka K (2012) Rational design of smart supramolecular assemblies for gene delivery: chemical challenges in the creation of artificial viruses. Chem Soc Rev 41:2562–2574CrossRefPubMedGoogle Scholar
  18. 18.
    Lächelt U, Wagner E (2015) Nucleic acid therapeutics using polyplexes: a journey of 50 years (and beyond). Chem Rev 115:11043–11078CrossRefPubMedGoogle Scholar
  19. 19.
    Sakurai Y et al (2013) Gene silencing via RNAi and siRNA quantification in tumor tissue using MEND, a liposomal siRNA delivery system. Mol Ther 21:1195–1203CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24:1504–1534CrossRefPubMedGoogle Scholar
  21. 21.
    Kim HJ et al (2014) Precise engineering of siRNA delivery vehicles to tumors using polyion complexes and gold nanoparticles. ACS Nano 8:8979–8991CrossRefPubMedGoogle Scholar
  22. 22.
    Pittella F et al (2014) Systemic siRNA delivery to a spontaneous pancreatic tumor model in transgenic mice by PEGylated calcium phosphate hybrid micelles. J Control Release 178:18–24CrossRefPubMedGoogle Scholar
  23. 23.
    Heissig P et al (2016) DNA as tunable adaptor for siRNA polyplex stabilization and functionalization. Mol Ther Nucleic Acids 5:e288CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Möller K et al (2016) Highly efficient siRNA delivery from core-shell mesoporous silica nanoparticles with multifunctional polymer caps. Nanoscale 8:4007–4019CrossRefPubMedGoogle Scholar
  25. 25.
    Krzyszton R et al (2017) Microfluidic self-assembly of folate-targeted monomolecular siRNA-lipid nanoparticles. Nanoscale 9:7442–7453CrossRefPubMedGoogle Scholar
  26. 26.
    Scholz C, Wagner E (2012) Therapeutic plasmid DNA versus siRNA delivery: common and different tasks for synthetic carriers. J Control Release 161:554–565CrossRefPubMedGoogle Scholar
  27. 27.
    Wagner E (2013) Biomaterials in RNAi therapeutics: quo vadis? Biomater Sci 1:804–809CrossRefGoogle Scholar
  28. 28.
    Salcher EE et al (2012) Sequence-defined four-arm oligo(ethanamino)amides for pDNA and siRNA delivery: impact of building blocks on efficacy. J Control Release 164:380–386CrossRefPubMedGoogle Scholar
  29. 29.
    Schaffert D et al (2011) Solid-phase synthesis of sequence-defined T-, i-, and U-shape polymers for pDNA and siRNA delivery. Angew Chem Int Ed 50:8986–8989CrossRefGoogle Scholar
  30. 30.
    Lee DJ, Wagner E, Lehto T (2015) Sequence-defined oligoaminoamides for the delivery of siRNAs. Methods Mol Biol 1206:15–27CrossRefPubMedGoogle Scholar
  31. 31.
    He D, Wagner E (2015) Defined polymeric materials for gene delivery. Macromol Biosci 15:600–612CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang P, Wagner E (2017) History of polymeric gene delivery systems. Top Curr Chem (Cham) 375:26CrossRefGoogle Scholar
  33. 33.
    Reinhard S, Wagner E (2017) How to tackle the challenge of siRNA delivery with sequence-defined oligoamino amides. Macromol Biosci. 17:1  https://doi.org/10.1002/mabi.201600152CrossRefGoogle Scholar
  34. 34.
    Scholz C, Kos P, Wagner E (2014) Comb-like oligoaminoethane carriers: change in topology improves pDNA delivery. Bioconjug Chem 25:251–261CrossRefPubMedGoogle Scholar
  35. 35.
    Lächelt U et al (2014) Fine-tuning of proton sponges by precise diaminoethanes and histidines in pDNA polyplexes. Nanomedicine 10:35–44CrossRefPubMedGoogle Scholar
  36. 36.
    Frohlich T et al (2012) Structure-activity relationships of siRNA carriers based on sequence-defined oligo (ethane amino) amides. J Control Release 160:532–541CrossRefPubMedGoogle Scholar
  37. 37.
    Reinhard S, Zhang W, Wagner E (2017) Optimized solid-phase-assisted synthesis of oleic acid containing siRNA nanocarriers. ChemMedChem 12:1464–1470CrossRefPubMedGoogle Scholar
  38. 38.
    Troiber C et al (2013) Stabilizing effect of tyrosine trimers on pDNA and siRNA polyplexes. Biomaterials 34:1624–1633CrossRefPubMedGoogle Scholar
  39. 39.
    Klein PM et al (2016) Precise redox-sensitive cleavage sites for improved bioactivity of siRNA lipopolyplexes. Nanoscale 8:18098–18104CrossRefPubMedGoogle Scholar
  40. 40.
    Dohmen C et al (2012) Nanosized multifunctional polyplexes for receptor-mediated siRNA delivery. ACS Nano 6:5198–5208CrossRefPubMedGoogle Scholar
  41. 41.
    Plank C et al (1994) The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems. J Biol Chem 269:12918–12924PubMedGoogle Scholar
  42. 42.
    Mechtler K, Wagner E (1997) Gene transfer mediated by influenza virus peptides: the role of peptide sequence. New J Chem 21:105–111Google Scholar
  43. 43.
    Wagner E (1998) Effects of membrane-active agents in gene delivery. J Control Release 53:155–158CrossRefPubMedGoogle Scholar
  44. 44.
    Klein PM et al (2015) Twin disulfides as opportunity for improving stability and transfection efficiency of oligoaminoethane polyplexes. J Control Release 205:109–119CrossRefPubMedGoogle Scholar
  45. 45.
    Lee DJ et al (2016) Dual antitumoral potency of EG5 siRNA nanoplexes armed with cytotoxic bifunctional glutamyl-methotrexate targeting ligand. Biomaterials 77:98–110CrossRefPubMedGoogle Scholar
  46. 46.
    Zhang W et al (2016) Targeted siRNA delivery using a lipo-oligoaminoamide nano-core with an influenza peptide and transferrin shell. Adv Healthc Mater 5:1493–1504CrossRefPubMedGoogle Scholar
  47. 47.
    Martin I et al (2012) Solid-phase-assisted synthesis of targeting peptide-PEG-oligo|(ethane amino)amides for receptor-mediated gene delivery. Org Biomol Chem 10:3258–3268CrossRefGoogle Scholar
  48. 48.
    An S et al (2015) Peptide-like polymers exerting effective glioma-targeted siRNA delivery and release for therapeutic application. Small 11:5142–5150CrossRefPubMedGoogle Scholar
  49. 49.
    Kos P et al (2015) Dual-targeted polyplexes based on sequence-defined peptide-PEG-oligoamino amides. J Pharm Sci 104:464–475CrossRefPubMedGoogle Scholar
  50. 50.
    Kos P et al (2015) Histidine-rich stabilized polyplexes for cMet-directed tumor-targeted gene transfer. Nanoscale 7:5350–5362CrossRefPubMedGoogle Scholar
  51. 51.
    Zhang W et al (2015) Combination of sequence-defined oligoaminoamides with transferrin-polycation conjugates for receptor-targeted gene delivery. J Gene Med 17:161–172CrossRefPubMedGoogle Scholar
  52. 52.
    Müller K et al (2016) EGF receptor targeted lipo-oligocation polyplexes for antitumoral siRNA and miRNA delivery. Nanotechnology 27:464001CrossRefPubMedGoogle Scholar
  53. 53.
    de Bono JS, Ashworth A (2010) Translating cancer research into targeted therapeutics. Nature 467:543–549CrossRefPubMedGoogle Scholar
  54. 54.
    He D et al (2016) Combinatorial optimization of sequence-defined oligo(ethanamino)amides for folate receptor-targeted pDNA and siRNA delivery. Bioconjug Chem 27:647–659CrossRefPubMedGoogle Scholar
  55. 55.
    Müller K et al (2016) Post-PEGylation of siRNA lipo-oligoamino amide polyplexes using tetra-glutamylated folic acid as ligand for receptor-targeted delivery. Mol Pharm 13:2332–2345CrossRefPubMedGoogle Scholar
  56. 56.
    Lee DJ et al (2017) Systemic delivery of folate-PEG siRNA lipopolyplexes with enhanced intracellular stability for in vivo gene silencing in leukemia. Bioconjug Chem 28:2393–2409CrossRefPubMedGoogle Scholar
  57. 57.
    Lee DJ et al (2016) Tumoral gene silencing by receptor-targeted combinatorial siRNA polyplexes. J Control Release 244:280–291CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pharmacy, Center for NanoScienceLudwig-Maximilians-Universität MünchenMunichGermany
  2. 2.Nanosystems Initiative Munich (NIM)MunichGermany

Personalised recommendations