Skip to main content

Combinatorial siRNA Polyplexes for Receptor Targeting

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1974))

Abstract

As synthetic small interfering RNA (siRNA) against antitumoral gene targets show promise for cancer treatment, different siRNA delivery systems have sparkled intense investigations. To develop tumor-specific carriers for cytosolic and systemic siRNA delivery, our laboratory has recently generated folate-conjugated targeted combinatorial siRNA polyplexes based on sequence-defined oligomer platform compatible with solid-phase-supported synthesis. These polyplexes presented efficient siRNA-mediated gene silencing in folate receptor-expressing tumors in vitro and in vivo. In this chapter, we provide a brief background on the formulation design and detailed protocols to evaluate polyplex formation, gene silencing efficiency, and receptor-directed cell killing in cancer cells using targeted combinatorial siRNA polyplexes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8:129–138

    Article  CAS  PubMed  Google Scholar 

  2. Murrow LM et al (2010) Identification of WEE1 as a potential molecular target in cancer cells by RNAi screening of the human tyrosine kinome. Breast Cancer Res Treat 122:347–357

    Article  CAS  PubMed  Google Scholar 

  3. Goidts V et al (2012) RNAi screening in glioma stem-like cells identifies PFKFB4 as a key molecule important for cancer cell survival. Oncogene 31:3235–3243

    Article  CAS  PubMed  Google Scholar 

  4. Tiedemann RE et al (2010) Kinome-wide RNAi studies in human multiple myeloma identify vulnerable kinase targets, including a lymphoid-restricted kinase, GRK6. Blood 115:1594–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Azorsa DO et al (2009) Synthetic lethal RNAi screening identifies sensitizing targets for gemcitabine therapy in pancreatic cancer. J Transl Med 7:43

    Article  PubMed  PubMed Central  Google Scholar 

  6. Haussecker D et al (2015) RNA interference. Drugging RNAi. Science 347:1069–1070

    Article  PubMed  PubMed Central  Google Scholar 

  7. Valentine MT et al (2006) Eg5 steps it up! Cell Div 1:31

    Article  PubMed  PubMed Central  Google Scholar 

  8. Judge AD et al (2009) Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice. J Clin Invest 119:661–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Edinger D et al (2014) Gene silencing and antitumoral effects of Eg5 or Ran siRNA oligoaminoamide polyplexes. Drug Deliv Transl Res 4:84–95

    Article  CAS  PubMed  Google Scholar 

  10. Harborth J et al (2001) Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci 114:4557–4565

    CAS  PubMed  Google Scholar 

  11. Wagner E (2012) Polymers for siRNA delivery: inspired by viruses to be targeted, dynamic, and precise. Acc Chem Res 45:1005–1013

    Article  CAS  PubMed  Google Scholar 

  12. Klein PM, Wagner E (2014) Bioreducible polycations as shuttles for therapeutic nucleic acid and protein transfection. Antioxid Redox Signal 21:804–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kanasty R et al (2013) Delivery materials for siRNA therapeutics. Nat Mater 12:967–977

    Article  CAS  PubMed  Google Scholar 

  14. Boussif O et al (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 92:7297–7301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. De Smedt SC, Demeester J, Hennink WE (2000) Cationic polymer based gene delivery systems. Pharm Res 17:113–126

    Article  PubMed  Google Scholar 

  16. Pack DW et al (2005) Design and development of polymers for gene delivery. Nat Rev Drug Discov 4:581–593

    Article  CAS  PubMed  Google Scholar 

  17. Miyata K, Nishiyama N, Kataoka K (2012) Rational design of smart supramolecular assemblies for gene delivery: chemical challenges in the creation of artificial viruses. Chem Soc Rev 41:2562–2574

    Article  CAS  PubMed  Google Scholar 

  18. Lächelt U, Wagner E (2015) Nucleic acid therapeutics using polyplexes: a journey of 50 years (and beyond). Chem Rev 115:11043–11078

    Article  PubMed  Google Scholar 

  19. Sakurai Y et al (2013) Gene silencing via RNAi and siRNA quantification in tumor tissue using MEND, a liposomal siRNA delivery system. Mol Ther 21:1195–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24:1504–1534

    Article  CAS  PubMed  Google Scholar 

  21. Kim HJ et al (2014) Precise engineering of siRNA delivery vehicles to tumors using polyion complexes and gold nanoparticles. ACS Nano 8:8979–8991

    Article  CAS  PubMed  Google Scholar 

  22. Pittella F et al (2014) Systemic siRNA delivery to a spontaneous pancreatic tumor model in transgenic mice by PEGylated calcium phosphate hybrid micelles. J Control Release 178:18–24

    Article  CAS  PubMed  Google Scholar 

  23. Heissig P et al (2016) DNA as tunable adaptor for siRNA polyplex stabilization and functionalization. Mol Ther Nucleic Acids 5:e288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Möller K et al (2016) Highly efficient siRNA delivery from core-shell mesoporous silica nanoparticles with multifunctional polymer caps. Nanoscale 8:4007–4019

    Article  PubMed  Google Scholar 

  25. Krzyszton R et al (2017) Microfluidic self-assembly of folate-targeted monomolecular siRNA-lipid nanoparticles. Nanoscale 9:7442–7453

    Article  CAS  PubMed  Google Scholar 

  26. Scholz C, Wagner E (2012) Therapeutic plasmid DNA versus siRNA delivery: common and different tasks for synthetic carriers. J Control Release 161:554–565

    Article  CAS  PubMed  Google Scholar 

  27. Wagner E (2013) Biomaterials in RNAi therapeutics: quo vadis? Biomater Sci 1:804–809

    Article  CAS  Google Scholar 

  28. Salcher EE et al (2012) Sequence-defined four-arm oligo(ethanamino)amides for pDNA and siRNA delivery: impact of building blocks on efficacy. J Control Release 164:380–386

    Article  CAS  PubMed  Google Scholar 

  29. Schaffert D et al (2011) Solid-phase synthesis of sequence-defined T-, i-, and U-shape polymers for pDNA and siRNA delivery. Angew Chem Int Ed 50:8986–8989

    Article  CAS  Google Scholar 

  30. Lee DJ, Wagner E, Lehto T (2015) Sequence-defined oligoaminoamides for the delivery of siRNAs. Methods Mol Biol 1206:15–27

    Article  CAS  PubMed  Google Scholar 

  31. He D, Wagner E (2015) Defined polymeric materials for gene delivery. Macromol Biosci 15:600–612

    Article  CAS  PubMed  Google Scholar 

  32. Zhang P, Wagner E (2017) History of polymeric gene delivery systems. Top Curr Chem (Cham) 375:26

    Article  Google Scholar 

  33. Reinhard S, Wagner E (2017) How to tackle the challenge of siRNA delivery with sequence-defined oligoamino amides. Macromol Biosci. 17:1 https://doi.org/10.1002/mabi.201600152

    Article  Google Scholar 

  34. Scholz C, Kos P, Wagner E (2014) Comb-like oligoaminoethane carriers: change in topology improves pDNA delivery. Bioconjug Chem 25:251–261

    Article  CAS  PubMed  Google Scholar 

  35. Lächelt U et al (2014) Fine-tuning of proton sponges by precise diaminoethanes and histidines in pDNA polyplexes. Nanomedicine 10:35–44

    Article  PubMed  Google Scholar 

  36. Frohlich T et al (2012) Structure-activity relationships of siRNA carriers based on sequence-defined oligo (ethane amino) amides. J Control Release 160:532–541

    Article  PubMed  Google Scholar 

  37. Reinhard S, Zhang W, Wagner E (2017) Optimized solid-phase-assisted synthesis of oleic acid containing siRNA nanocarriers. ChemMedChem 12:1464–1470

    Article  CAS  PubMed  Google Scholar 

  38. Troiber C et al (2013) Stabilizing effect of tyrosine trimers on pDNA and siRNA polyplexes. Biomaterials 34:1624–1633

    Article  CAS  PubMed  Google Scholar 

  39. Klein PM et al (2016) Precise redox-sensitive cleavage sites for improved bioactivity of siRNA lipopolyplexes. Nanoscale 8:18098–18104

    Article  CAS  PubMed  Google Scholar 

  40. Dohmen C et al (2012) Nanosized multifunctional polyplexes for receptor-mediated siRNA delivery. ACS Nano 6:5198–5208

    Article  CAS  PubMed  Google Scholar 

  41. Plank C et al (1994) The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems. J Biol Chem 269:12918–12924

    CAS  PubMed  Google Scholar 

  42. Mechtler K, Wagner E (1997) Gene transfer mediated by influenza virus peptides: the role of peptide sequence. New J Chem 21:105–111

    CAS  Google Scholar 

  43. Wagner E (1998) Effects of membrane-active agents in gene delivery. J Control Release 53:155–158

    Article  CAS  PubMed  Google Scholar 

  44. Klein PM et al (2015) Twin disulfides as opportunity for improving stability and transfection efficiency of oligoaminoethane polyplexes. J Control Release 205:109–119

    Article  CAS  PubMed  Google Scholar 

  45. Lee DJ et al (2016) Dual antitumoral potency of EG5 siRNA nanoplexes armed with cytotoxic bifunctional glutamyl-methotrexate targeting ligand. Biomaterials 77:98–110

    Article  CAS  PubMed  Google Scholar 

  46. Zhang W et al (2016) Targeted siRNA delivery using a lipo-oligoaminoamide nano-core with an influenza peptide and transferrin shell. Adv Healthc Mater 5:1493–1504

    Article  CAS  PubMed  Google Scholar 

  47. Martin I et al (2012) Solid-phase-assisted synthesis of targeting peptide-PEG-oligo|(ethane amino)amides for receptor-mediated gene delivery. Org Biomol Chem 10:3258–3268

    Article  CAS  Google Scholar 

  48. An S et al (2015) Peptide-like polymers exerting effective glioma-targeted siRNA delivery and release for therapeutic application. Small 11:5142–5150

    Article  CAS  PubMed  Google Scholar 

  49. Kos P et al (2015) Dual-targeted polyplexes based on sequence-defined peptide-PEG-oligoamino amides. J Pharm Sci 104:464–475

    Article  CAS  PubMed  Google Scholar 

  50. Kos P et al (2015) Histidine-rich stabilized polyplexes for cMet-directed tumor-targeted gene transfer. Nanoscale 7:5350–5362

    Article  CAS  PubMed  Google Scholar 

  51. Zhang W et al (2015) Combination of sequence-defined oligoaminoamides with transferrin-polycation conjugates for receptor-targeted gene delivery. J Gene Med 17:161–172

    Article  CAS  PubMed  Google Scholar 

  52. Müller K et al (2016) EGF receptor targeted lipo-oligocation polyplexes for antitumoral siRNA and miRNA delivery. Nanotechnology 27:464001

    Article  PubMed  Google Scholar 

  53. de Bono JS, Ashworth A (2010) Translating cancer research into targeted therapeutics. Nature 467:543–549

    Article  PubMed  Google Scholar 

  54. He D et al (2016) Combinatorial optimization of sequence-defined oligo(ethanamino)amides for folate receptor-targeted pDNA and siRNA delivery. Bioconjug Chem 27:647–659

    Article  CAS  PubMed  Google Scholar 

  55. Müller K et al (2016) Post-PEGylation of siRNA lipo-oligoamino amide polyplexes using tetra-glutamylated folic acid as ligand for receptor-targeted delivery. Mol Pharm 13:2332–2345

    Article  PubMed  Google Scholar 

  56. Lee DJ et al (2017) Systemic delivery of folate-PEG siRNA lipopolyplexes with enhanced intracellular stability for in vivo gene silencing in leukemia. Bioconjug Chem 28:2393–2409

    Article  CAS  PubMed  Google Scholar 

  57. Lee DJ et al (2016) Tumoral gene silencing by receptor-targeted combinatorial siRNA polyplexes. J Control Release 244:280–291

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work presented in this article was supported by German Research Foundation (DFG) grant SFB1032 (Project B4) and German Excellence Cluster Nanosystems Initiative Munich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lee, DJ., Wagner, E. (2019). Combinatorial siRNA Polyplexes for Receptor Targeting. In: Dinesh Kumar, L. (eds) RNA Interference and Cancer Therapy. Methods in Molecular Biology, vol 1974. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9220-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9220-1_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9219-5

  • Online ISBN: 978-1-4939-9220-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics