Skip to main content

VEGFA Gene Silencing in CXCR4-Expressing Cells via siRNA Delivery by Means of Targeted Peptide Carrier

  • Protocol
  • First Online:
Book cover RNA Interference and Cancer Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1974))

Abstract

Discovery of small interfering RNA as a tool for specific gene inhibition led to the development of new therapeutic strategy for the treatment of cancers. The efficacious delivery of therapeutic siRNAs into the cells is a crucial step in RNA interference (RNAi) application, but it remains challenging. Non-viral vectors can provide specific cellular uptake, stable siRNA complex formation, and intracellular siRNA release. Recently, we evaluated modular peptide carrier L1 bearing CXCR4 targeting ligand for its ability to condense siRNA and facilitate endosomal escape and VEGFA gene silencing in CXCR4-expressing endothelial and glioblastoma cells. The present chapter showcases the ability of L1 targeted peptide carrier to form complexes with siRNA and provide efficient VEGFA gene knockdown. We showed that siRNA delivery by means of L1 peptide carrier can result in significant decrease of VEGFA gene expression in A172 glioblastoma cells and in EA.hy 926 endothelial cells. Also, delivery of anti-VEGFA siRNA/peptide complexes led to significant inhibition of endothelial cell migration. Our results showed that L1 peptide carrier modified with CXCR4 ligand is a promising tool for targeted siRNA delivery into CXCR4-expressing cancer and endothelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ameres SL, Martinez J, Schroeder R (2007) Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130:101–112. https://doi.org/10.1016/j.cell.2007.04.037

    Article  CAS  PubMed  Google Scholar 

  2. Tong AW, Zhang Y-A, Nemunaitis J (2005) Small interfering RNA for experimental cancer therapy. Curr Opin Mol Ther 7:114–124

    CAS  PubMed  Google Scholar 

  3. Egorova AA, Kiselev AV (2016) Peptide modules for overcoming barriers of nucleic acids transport to cells. Curr Top Med Chem 16:330–342. https://doi.org/10.2174/1568026615666150812120755

    Article  CAS  PubMed  Google Scholar 

  4. Boussif O, Lezoualc’h F, Zanta MA et al (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci 92:7297–7301. https://doi.org/10.1073/pnas.92.16.7297

    Article  CAS  PubMed  Google Scholar 

  5. Felgner JH, Kumar R, Sridhar CN et al (1994) Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem 269:2550–2561

    CAS  PubMed  Google Scholar 

  6. Huh MS, Lee EJ, Koo H et al (2017) Polysaccharide-based nanoparticles for gene delivery. Top Curr Chem 375:31. https://doi.org/10.1007/s41061-017-0114-y

    Article  CAS  Google Scholar 

  7. Dufès C, Uchegbu IF, Schätzlein AG (2005) Dendrimers in gene delivery. Adv Drug Deliv Rev 57:2177–2202

    Article  PubMed  Google Scholar 

  8. Kiselev AV, Il’ina PL, Egorova AA et al (2007) Lysine dendrimers as vectors for delivery of genetic constructs to eukaryotic cells. Russ J Genet 43:593–600. https://doi.org/10.1134/S1022795407060014

    Article  CAS  Google Scholar 

  9. Guryanov IA, Vlasov GP, Lesina EA et al (2005) Cationic oligopeptides modified with lipophilic fragments: use for DNA delivery to cells. Russ J Bioorganic Chem 31:18–26. https://doi.org/10.1007/s11171-005-0002-z

    Article  CAS  Google Scholar 

  10. Juarez J, Bendall L, Bradstock K (2004) Chemokines and their receptors as therapeutic targets: the role of the SDF-1/CXCR4 axis. Curr Pharm Des 10:1245–1259. https://doi.org/10.2174/1381612043452640

    Article  CAS  PubMed  Google Scholar 

  11. Andre F, Soria JC, Assi H et al (2004) Expression of chemokine receptors by cancer cells. Bull Cancer 91(Suppl 4):S254–S256

    PubMed  Google Scholar 

  12. Driessen WHP, Fujii N, Tamamura H, Sullivan SM (2008) Development of peptide-targeted lipoplexes to CXCR4-expressing rat glioma cells and rat proliferating endothelial cells. Mol Ther 16:516–524. https://doi.org/10.1038/sj.mt.6300388

    Article  CAS  PubMed  Google Scholar 

  13. Fulton AM (2009) Chemokine receptors in cancer. Humana, New York. ​https://doi.org/10.1007/978-1-60327-267-4

    Google Scholar 

  14. Wang Y, Xie Y, Oupicky D (2016) Potential of CXCR4/CXCL12 chemokine axis in cancer drug delivery. Curr Pharmacol Rep 2:1–10. https://doi.org/10.1007/s40495-015-0044-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kucia M, Reca R, Miekus K et al (2005) Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis. Stem Cells 23:879–894. https://doi.org/10.1634/stemcells.2004-0342

    Article  CAS  PubMed  Google Scholar 

  16. Salcedo R, Oppenheim JJ (2003) Role of chemokines in angiogenesis: CXCL12/SDF-1 and CXCR4 interaction, a key regulator of endothelial cell responses. Microcirculation 10:359–370. https://doi.org/10.1038/sj.mn.7800200

    Article  CAS  PubMed  Google Scholar 

  17. Al-Hajj M, Clarke MF (2004) Self-renewal and solid tumor stem cells. Oncogene 23:7274–7282. https://doi.org/10.1038/sj.onc.1207947

    Article  CAS  PubMed  Google Scholar 

  18. Chen S, Feng J, Ma L et al (2014) RNA interference technology for anti-VEGF treatment. Expert Opin Drug Deliv 11:1471–1480. https://doi.org/10.1517/17425247.2014.926886

    Article  CAS  PubMed  Google Scholar 

  19. Shubina AN, Egorova AA, Baranov VS, Kiselev AV (2013) Recent advances in gene therapy of endometriosis. Recent Pat DNA Gene Seq 7:169–178. https://doi.org/10.2174/18722156113079990021

    Article  CAS  PubMed  Google Scholar 

  20. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  CAS  PubMed  Google Scholar 

  21. Le Bon B, Van Craynest N, Daoudi J-M et al (2004) AMD3100 conjugates as components of targeted nonviral gene delivery systems: synthesis and in vitro transfection efficiency of CXCR4-expressing cells. Bioconjug Chem 15:413–423. https://doi.org/10.1021/bc034220o

    Article  CAS  PubMed  Google Scholar 

  22. Li J, Zhu Y, Hazeldine ST et al (2012) Dual-function CXCR4 antagonist polyplexes to deliver gene therapy and inhibit cancer cell invasion. Angew Chem Int Ed Engl 51:8740–8743. https://doi.org/10.1002/anie.201203463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Egorova A, Kiselev A, Hakli M et al (2009) Chemokine-derived peptides as carriers for gene delivery to CXCR4 expressing cells. J Gene Med 11:772–781. https://doi.org/10.1002/jgm.1366

    Article  CAS  PubMed  Google Scholar 

  24. Egorova A, Bogacheva M, Shubina A et al (2014) Development of a receptor-targeted gene delivery system using CXCR4 ligand-conjugated cross-linking peptides. J Gene Med 16:336–351. https://doi.org/10.1002/jgm.2811

    Article  CAS  PubMed  Google Scholar 

  25. Li J, Lepadatu AM, Zhu Y et al (2014) Examination of structure-activity relationship of viologen-based dendrimers as cxcr4 antagonists and gene carriers. Bioconjug Chem 25:907–917. https://doi.org/10.1021/bc500191q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li J, Oupický D (2014) Effect of biodegradability on CXCR4 antagonism, transfection efficacy and antimetastatic activity of polymeric Plerixafor. Biomaterials 35:5572–5579. https://doi.org/10.1016/j.biomaterials.2014.03.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang Y, Li J, Chen Y, Oupický D (2015) Balancing polymer hydrophobicity for ligand presentation and siRNA delivery in dual function CXCR4 inhibiting polyplexes. Biomater Sci 3:1114–1123. https://doi.org/10.1039/C5BM00003C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang Y, Li J, Oupický D (2014) Polymeric plerixafor: effect of PEGylation on CXCR4 antagonism, cancer cell invasion, and DNA transfection. Pharm Res 31:3538–3548. https://doi.org/10.1007/s11095-014-1440-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guo P, You JO, Yang J et al (2014) Inhibiting metastatic breast cancer cell migration via the synergy of targeted, pH-triggered siRNA delivery and chemokine axis blockade. Mol Pharm 11:755–765. https://doi.org/10.1021/mp4004699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kiselev A, Egorova A, Laukkanen A et al (2013) Characterization of reducible peptide oligomers as carriers for gene delivery. Int J Pharm 441:736–747. https://doi.org/10.1016/j.ijpharm.2012.10.020

    Article  CAS  PubMed  Google Scholar 

  31. Egorova A, Shubina A, Sokolov D et al (2016) CXCR4-targeted modular peptide carriers for efficient anti-VEGF siRNA delivery. Int J Pharm 515:431–440. https://doi.org/10.1016/j.ijpharm.2016.10.049

    Article  CAS  PubMed  Google Scholar 

  32. De Fougerolles A, Frank-Kamenetsky M, Manoharan M et al (2011) IRNA agents targeting VEGF. US Patent No. 7,919,473, 5 Apr 2011

    Google Scholar 

  33. Xu H, Jiang B, Meng L et al (2012) N-α-acetyltransferase 10 protein inhibits apoptosis through RelA/p65-regulated MCL1 expression. Carcinogenesis 33:1193–1202. https://doi.org/10.1093/carcin/bgs144

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Russian Science Foundation grant 14-15-00737. Marianna Maretina is supported by President of Russian Federation scholarship (SP-822.2018.4).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Egorova, A.A., Maretina, M.A., Kiselev, A.V. (2019). VEGFA Gene Silencing in CXCR4-Expressing Cells via siRNA Delivery by Means of Targeted Peptide Carrier. In: Dinesh Kumar, L. (eds) RNA Interference and Cancer Therapy. Methods in Molecular Biology, vol 1974. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9220-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9220-1_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9219-5

  • Online ISBN: 978-1-4939-9220-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics