Skip to main content

In Vitro Evaluation of Candidate Gene Targets for Cancer Therapy

  • Protocol
  • First Online:
RNA Interference and Cancer Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1974))

Abstract

Discovery and development of gene targets for cancer therapeutics are lengthy and highly costly processes. Identification and evaluation of candidate gene targets are of fundamental importance. RNA interference allows candidate genes to be specifically and effectively knocked down in cancer cells. This tool can be easily incorporated into a loss-of-function approach in the initial evaluation of candidate gene targets for cancer treatment prior to moving on to animal studies and clinical trials. This chapter describes a relatively simple and straightforward protocol that makes use of small interfering RNA to achieve knockdown of the candidate gene target and to evaluate the resultant effects on four aspects of cancer cell behavior: migration, invasion, proliferation, and adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dana H, Chalbatani GM, Mahmoodzadeh H, Karimloo R, Rezaiean O, Moradzadeh A et al (2017) Molecular mechanisms and biological functions of siRNA. Int J Biomed Sci 13(2):48–57

    PubMed  PubMed Central  Google Scholar 

  2. Iravani O, Bay BH, Yip GW (2017) Silencing HS6ST3 inhibits growth and progression of breast cancer cells through suppressing IGF1R and inducing XAF1. Exp Cell Res 350(2):380–389

    Article  CAS  PubMed  Google Scholar 

  3. Schlabach MR, Luo J, Solimini NL, Hu G, Xu Q, Li MZ et al (2008) Cancer proliferation gene discovery through functional genomics. Science 319(5863):620–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ahmadzada T, Reid G, McKenzie DR (2018) Fundamentals of siRNA and miRNA therapeutics and a review of targeted nanoparticle delivery systems in breast cancer. Biophys Rev 10(1):69–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen X, Mangala LS, Rodriguez-Aguayo C, Kong X, Lopez-Berestein G, Sood AK (2018) RNA interference-based therapy and its delivery systems. Cancer Metastasis Rev 37(1):107–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lai Y, Lim D, Tan PH, Leung TK, Yip GW, Bay BH (2010) Silencing the metallothionein-2A gene induces entosis in adherent MCF-7 breast cancer cells. Anat Rec (Hoboken) 293(10):1685–1691

    Article  CAS  Google Scholar 

  7. Vijaya Kumar A, Salem Gassar E, Spillmann D, Stock C, Sen YP, Zhang T et al (2014) HS3ST2 modulates breast cancer cell invasiveness via MAP kinase- and Tcf4 (Tcf7l2)-dependent regulation of protease and cadherin expression. Int J Cancer 135(11):2579–2592

    Article  CAS  PubMed  Google Scholar 

  8. Roussos ET, Condeelis JS, Patsialou A (2011) Chemotaxis in cancer. Nat Rev Cancer 11(8):573–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hall DM, Brooks SA (2014) In vitro invasion assay using matrigel: a reconstituted basement membrane preparation. Methods Mol Biol 1070:1–11

    Article  PubMed  Google Scholar 

  10. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  11. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  12. Cory AH, Owen TC, Barltrop JA, Cory JG (1991) Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun 3(7):207–212

    Article  CAS  PubMed  Google Scholar 

  13. Oskarsson T (2013) Extracellular matrix components in breast cancer progression and metastasis. Breast 22(Suppl 2):S66–S72

    Article  PubMed  Google Scholar 

  14. (2003) Whither RNAi? Nat Cell Biol 5(6):489–490

    Google Scholar 

Download references

Acknowledgment

We would like to thank S. L. Bay for her help in preparing the illustrations and C. X. Ng for contributing images for Fig. 3. Work in the laboratory of G. W. Yip is supported by Grants NMRC/CSA/0041/2012 and NMRC/CIRG/1436/2015 from the National Medical Research Council, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George W. Yip .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tan, X.F., Teo, W.X., Yip, G.W. (2019). In Vitro Evaluation of Candidate Gene Targets for Cancer Therapy. In: Dinesh Kumar, L. (eds) RNA Interference and Cancer Therapy. Methods in Molecular Biology, vol 1974. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9220-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9220-1_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9219-5

  • Online ISBN: 978-1-4939-9220-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics