Advertisement

Preparation of a Carrier to Achieve In Vivo Delivery of siRNA: The Example of Chitosan-Coated Poly(isobutylcyanoacrylate) Nanoparticles

  • Christine VauthierEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1974)

Abstract

This chapter describes the preparation of chitosan-coated poly(isobutylcyanoacrylate) nanoparticles as a suitable carrier to deliver siRNAs to two types of xenograft tumor models of mice. The nanoparticles are prepared by a method of emulsion polymerization that includes steps of polymerization and purification. The polymerization method is carried out in a single pot in an aqueous medium. siRNAs are coupled with the nanoparticles at the end of the preparation by adsorption. The protocol also explains how to determine optimum yield/the titer of association of siRNA with the nanoparticles. It is described for a preparation scale at 4 mL of nanoparticle dispersion at a concentration of 42–46 mg nanoparticles/mL. Optimal loading capacity of the nanoparticles with the siRNA can be achieved by performing an association yield above 90% using a mass ratio of 1 mg siRNA/50 mg of nanoparticles (20 μg siRNA/mg nanoparticles, 1 nmol siRNA (Mw 14 kDa)/mg nanoparticles).

Keywords

Chitosan Delivery system Emulsion polymerization Poly(alkylcyanoacrylate) nanoparticle siRNA 

References

  1. 1.
    Mao S, Sun W, Kissel T (2010) Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev 62:12–27CrossRefPubMedGoogle Scholar
  2. 2.
    Müller LK, Landfester K (2015) Natural liposomes and synthetic polymeric structures for biomedical applications. Biochem Biophys Res Commun 468:411–418.  https://doi.org/10.1016/j.bbrc.2015.08.088CrossRefPubMedGoogle Scholar
  3. 3.
    Navarro G, Pan J, Torchilin VP (2015) Micelle-like nanoparticles as carriers for DNA and siRNA. Mol Pharm 12:301–113.  https://doi.org/10.1021/mp5007213CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Park J, Park J, Pei Y, Xu J, Yeo Y (2016) Pharmacokinetics and biodistribution of recently-developed siRNA nanomedicines. Adv Drug Deliv Rev 104:93–109.  https://doi.org/10.1016/j.addr.2015.12.004CrossRefPubMedGoogle Scholar
  5. 5.
    Ragelle H, Vandermeulen G, Preat V (2013) Chitosan-based siRNA delivery systems. J Control Release 172:207–218CrossRefPubMedGoogle Scholar
  6. 6.
    Reinhard S, Wagner E (2017) How to tackle the challenge of siRNA delivery with sequence-defined oligoamino amides. Macromol Biosci.  https://doi.org/10.1002/mabi.201600152CrossRefGoogle Scholar
  7. 7.
    Scomparin A, Polyak D, Krivitsky A, Satchi-Fainaro R (2015) Achieving successful delivery of oligonucleotides—from physico-chemical characterization to in vivo evaluation. Biotechnol Adv 33:1294–1309.  https://doi.org/10.1016/j.biotechadv.2015.04.008CrossRefPubMedGoogle Scholar
  8. 8.
    Shajari N, Mansoori B, Davudian S, Mohammadi A, Baradaran B (2017) Overcoming the challenges of sirna delivery: nanoparticle strategies. Curr Drug Deliv 14:36–46.  https://doi.org/10.2174/1567201813666160816105408CrossRefPubMedGoogle Scholar
  9. 9.
    Singh Y, Tomar S, Khan S, Meher JG, Pawar VK, Raval K, Sharma K, Singh PK, Chaurasia M, Surendar Reddy B, Chourasia MK (2015) Bridging small interfering RNA with giant therapeutic outcomes using nanometric liposomes. J Control Release 220:368–387.  https://doi.org/10.1016/j.jconrel.2015.10.050CrossRefPubMedGoogle Scholar
  10. 10.
    Vauthier C, Zandanel C, Ramon AL (2013) Chitosan-based nanoparticles for in vivo delivery of interfering agents including siRNA. Curr Opin Colloid Interface Sci 18:406–418.  https://doi.org/10.1016/j.cocis.2013.06.005CrossRefGoogle Scholar
  11. 11.
    Xu X, Li Z, Zhao X, Keen L, Kong X (2016) Calcium phosphate nanoparticles-based systems for siRNA delivery. Regen Biomater 3:187–195.  https://doi.org/10.1093/rb/rbw010CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    De Martimprey H, Bertrand JR, Fusco A, Santoro M, Couvreur P, Vauthier C, Malvy C (2008) siRNA nanomedicine against the Ret/PTC1 junction oncogene is efficient in papillary thyroid carcinoma. Nucleic Acid Res 36:e2.  https://doi.org/10.1093/nar/gkm1094. Erratum: Nucleic Acids Res (2008) 36: 6944CrossRefPubMedGoogle Scholar
  13. 13.
    De Martimprey H, Bertrand JR, Malvy C, Couvreur P, Vauthier C (2010) New core-shell nanoparticles for the intravenous delivery of siRNA to experimental thyroid papillary carcinoma. Pharm Res 27:498–509.  https://doi.org/10.1007/s11095-009-0043-8CrossRefPubMedGoogle Scholar
  14. 14.
    Ramon AL, Bertrand JR, De Martimprey H, Bernard G, Ponchel G, Malvy C, Vauthier C (2013) SiRNA associated with immunonanoparticles directed against cd99 antigen improve gene expression inhibition in vivo in Ewing’s sarcoma. J Mol Recogn 26:318–329.  https://doi.org/10.1002/jmr.2276CrossRefGoogle Scholar
  15. 15.
    Zandanel C, Vauthier C (2012) Poly(isobutylcyanoacrylate) nanoparticles decorated with chitosan: effect of conformation of chitosan chains at the surface on complement activation properties. J Coll Sci Biotechnol 1:68–81.  https://doi.org/10.1166/jcsb.2012.1004CrossRefGoogle Scholar
  16. 16.
    Karunaratne DN, Jafari M, Ranatunga RJ, Siriwardhana A (2015) Natural carriers for siRNA delivery. Curr Pharm Des 21:4529–4540CrossRefPubMedGoogle Scholar
  17. 17.
    Kastas H, Ghafoor Raja MA, Lam KL (2013) Development of chitosan nanoparticles as a stable drug delivery system for protein/siRNA. Int J Biomater:Article ID:146320.  https://doi.org/10.1155/2013/146320CrossRefGoogle Scholar
  18. 18.
    Kaur M, Sethi S, Bhatia A (2016) Chitosan nanoparticles: a therapeutic carrier for delivery of DNA, siRNA and CpG-ODNs. Nanosci Nanotechnol Asia 6:92–104.  https://doi.org/10.2174/2210681206666160402004454CrossRefGoogle Scholar
  19. 19.
    Lallana E, Rios de la Rosa JM, Tirella A, Pelliccia M, Gennari A, Stratford IJ, Puri S, Ashford M, Tirelli N (2017) Chitosan/hyaluronic acid nanoparticles: rational design revisited for RNA delivery. Mol Pharm 14:2422–2436.  https://doi.org/10.1021/acs.molpharmaceut.7b00320CrossRefPubMedGoogle Scholar
  20. 20.
    Martirosyan A, Olesen MJ, Howard KA (2014) Chitosan-based nanoparticles for mucosal delivery of RNAi therapeutics. Adv Genet 88:325–352.  https://doi.org/10.1016/B978-0-12-800148-6.00011-0CrossRefPubMedGoogle Scholar
  21. 21.
    Mokhtarzadeh A, Alibakhshi A, Hashemi M, Hejazi M, Hosseini V, de la Guardia M, Ramezani M (2017) Biodegradable nano-polymers as delivery vehicles for therapeutic small non-coding ribonucleic acids. J Control Release 245:116–126.  https://doi.org/10.1016/j.jconrel.2016.11.017CrossRefPubMedGoogle Scholar
  22. 22.
    Nascimento AV, Gattacceca F, Singh A, Bousbaa H, Ferreira D, Sarmento B, Amiji MM (2016) Biodistribution and pharmacokinetics of Mad2 siRNA-loaded EGFR-targeted chitosan nanoparticles in cisplatin sensitive and resistant lung cancer models. Nanomedicine.  https://doi.org/10.2217/nnm.16.14CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Raemdonck K, Martens TF, Braeckmans K, Demeester J, De Smedt SC (2013) Polysaccharide-based nucleic acid nanoformulations. Adv Drug Deliv Rev 65:1123–1147CrossRefPubMedGoogle Scholar
  24. 24.
    Ragelle H, Riva R, Vandermeulen G, Naeye B, Pourcelle V, Le Duff CS, D’Haese C, Nysten B, Braeckmans K, De Smedt SC, Jerome C, Preat V (2014) Chitosan nanoparticles for siRNA delivery: optimizing formulation to increase stability and efficiency. J Control Release 176:54–63CrossRefPubMedGoogle Scholar
  25. 25.
    Tavakoli Naeini A, Soliman OY, Alameh MG, Lavertu M, Buschmann MD (2017) Automated in-line mixing system for large scale production of chitosan-based polyplexes. J Colloid Interface Sci 500:253–263.  https://doi.org/10.1016/j.jcis.2017.04.013CrossRefPubMedGoogle Scholar
  26. 26.
    Yu S, Chen Y, Li X, Gao Z, Liu G (2017) Chitosan nanoparticle-delivered siRNA reduces CXCR4 expression and sensitizes breast cancer cells to cisplatin. Biosci Rep 37:BSR20170122.  https://doi.org/10.1042/BSR20170122CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chavany C, Le Doan T, Couvreur P, Puisieux F, Hélène C (1992) Poly-alkylcyanoacrylate nanoparticles as polymeric carriers for antisense oligonucleotides. Pharm Res 9:441–449CrossRefPubMedGoogle Scholar
  28. 28.
    Chavany C, Saison-Behmoaras T, Le Doan T, Couvreur P, Hélène C (1994) Adsorption of oligonucleotides onto polyisohexylcyanoacrylate nanoparticles protects them against nucleases and increases their cellular uptake. Pharm Res 11:1370–1378CrossRefPubMedGoogle Scholar
  29. 29.
    Nakada Y, Fattal E, Foulquier M, Couvreur P (1996) Pharmacokinetics and biodistribution of oligonucleotide adsorbed onto poly(isobutylcyanoacrylate) nanoparticles after intravenous administration in mice. Pharm Res 13:38–43CrossRefPubMedGoogle Scholar
  30. 30.
    Zimmer A (1999) Antisense oligonucleotide delivery with polyhexylcyanoacrylate nanoparticles as carriers. Methods 18(286–295):322Google Scholar
  31. 31.
    Zobel HP, Kreuter J, Werner D, Noe CR, Kümel G, Zimmer A (1997) Cationic polyhexylcyanoacrylate nanoparticles as carriers for antisense oligonucleotides. Antisense Nucleic Acid Drug Dev 7:483–493CrossRefPubMedGoogle Scholar
  32. 32.
    Bertholon I, Vauthier C, Labarre D (2006) Complement activation by core-shell poly(isobutylcyanoacrylate)-polysaccharide nanoparticles: influences of surface morphology, length, and type of polysaccharide. Pharm Res 23:1313–1323CrossRefPubMedGoogle Scholar
  33. 33.
    Peh K, Khan T, Ch’ng H (2000) Mechanical, bioadhesive strength and biological evaluations of chitosan films for wound dressing. J Pharm Pharm Sci 3:303–311PubMedGoogle Scholar
  34. 34.
    Zandanel C, Vauthier C (2012) Characterization of fluorescent poly(isobutylcyanoacrylate) nanoparticles obtained by copolymerization of a fluorescent probe during redox radical emulsion polymerization (RREP). Eur J Pharm Biopharm 82:66–75.  https://doi.org/10.1016/j.ejpb.2012.05.002CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut Galien Paris Sud, UMR CNRS 8612University of Paris-SudChatenay-MalabryFrance

Personalised recommendations