Skip to main content

Synthesis and Application of LKγT Peptide Nucleic Acids

  • Protocol
  • First Online:
Non-Natural Nucleic Acids

Abstract

Displaying ligands in a succinct and predictable manner is essential for elucidating multivalent molecular-level binding events. Organizing ligands with high precision and accuracy provides a distinct advantage over other ligand-display systems, such as polymers, because the number and position of the ligand(s) can be accurately and fully characterized. Here we describe the synthesis of peptide nucleic acids (PNAs), which are oligonucleotide mimics with a pseudopeptide backbone that can hybridize to oligonucleotides through Watson-Crick base pair to form highly predictable and organized scaffold for organizing a ligand. The ligand(s) are covalently attached to the PNA through a squarate coupling reaction that occurs between a free amine on the ligand and a free amine appended to the pseudopeptide backbone of the PNA. In this chapter we describe the synthesis of a LKγT monomer, which ultimately yields the free amine off the backbone of the PNA, incorporation of the monomer in a PNA oligomer, and the sequential squarate coupling to conjugate the ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fasting C, Schalley CA, Weber M, Seitz O, Hecht S, Koksch B, Dernedde J, Graf C, Knapp EW, Haag R (2012) Multivalency as a chemical organization and action principle. Angew Chem Int Ed Engl 51:10472–10498

    Article  CAS  Google Scholar 

  2. Mammen M, Choi S-K, Whitesides GM (1998) Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. Angew Chem Int Ed 37:2754–2794

    Article  Google Scholar 

  3. Dix AV, Moss SM, Phan K, Hoppe T, Paoletta S, Kozma E, Gao ZG, Durell SR, Jacobson KA, Appella DH (2014) Programmable nanoscaffolds that control ligand display to a G-protein-coupled receptor in membranes to allow dissection of multivalent effects. J Am Chem Soc 136:12296–12303

    Article  CAS  Google Scholar 

  4. Dix AV, Conroy JL, George Rosenker KM, Sibley DR, Appella DH (2015) PNA-based multivalent scaffolds activate the dopamine D2 receptor. ACS Med Chem Lett 6:425–429

    Article  CAS  Google Scholar 

  5. Englund EA, Wang D, Fujigaki H, Sakai H, Micklitsch CM, Ghirlando R, Martin-Manso G, Pendrak ML, Roberts DD, Durell SR, Appella DH (2012) Programmable multivalent display of receptor ligands using peptide nucleic acid nanoscaffolds. Nat Commun 3:614

    Article  Google Scholar 

  6. Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–1500

    Article  CAS  Google Scholar 

  7. Egholm M, Buchardt O, Christensen L, Behrens C, Freier SM, Driver DA, Berg RH, Kim SK, Norden B, Nielsen PE (1993) PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen-bonding rules. Nature 365:566–568

    Article  CAS  Google Scholar 

  8. Datta B, Schmitt C, Armitage BA (2003) Formation of a PNA2−DNA2 Hybrid Quadruplex. J Am Chem Soc 125:4111–4118

    Article  CAS  Google Scholar 

  9. Englund EA, Appella DH (2005) Synthesis of γ-substituted peptide nucleic acids: a new place to attach fluorophores without affecting DNA binding. Org Lett 7:3465–3467

    Article  CAS  Google Scholar 

  10. Kohler O, Jarikote DV, Seitz O (2005) Forced intercalation probes (FIT Probes): thiazole orange as a fluorescent base in peptide nucleic acids for homogeneous single-nucleotide-polymorphism detection. Chembiochem 6:69–77

    Article  Google Scholar 

  11. Kuhn H, Demidov VV, Coull JM, Fiandaca MJ, Gildea BD, Frank-Kamenetskii MD (2002) Hybridization of DNA and PNA molecular beacons to single-stranded and double-stranded DNA targets. J Am Chem Soc 124:1097–1103

    Article  CAS  Google Scholar 

  12. Kohhler O, Jarikote DV, Singh I, Parmar VS, Weinhold E, Seitz O (2005) Forced intercalation as a tool in gene diagnostics and in studying DNA–protein interactions. Pure Appl Chem 77:327–339

    Article  Google Scholar 

  13. Moustafa ME, Hudson RH (2011) An azo-based PNA monomer: synthesis and spectroscopic study. Nucleosides Nucleotides Nucleic Acids 30:740–751

    Article  CAS  Google Scholar 

  14. Ortiz E, Estrada G, Lizardi PM (1998) PNA molecular beacons for rapid detection of PCR amplicons. Mol Cell Probes 12:219–226

    Article  CAS  Google Scholar 

  15. Robertson KL, Yu L, Armitage BA, Lopez AJ, Peteanu LA (2006) Fluorescent PNA probes as hybridization labels for biological RNA. Biochemistry 45:6066–6074

    Article  CAS  Google Scholar 

  16. Roy S, Tanious FA, Wilson WD, Ly DH, Armitage BA (2007) High-affinity homologous peptide nucleic acid probes for targeting a Quadruplex-forming sequence from a MYC promoter element. Biochemistry 46:10433–10443

    Article  CAS  Google Scholar 

  17. Xi C, Balberg M, Boppart SA, Raskin L (2003) Use of DNA and peptide nucleic acid molecular beacons for detection and quantification of rRNA in solution and in whole cells. Appl Environ Microbiol 69:5673–5678

    Article  CAS  Google Scholar 

  18. Nielsen PE, Appella DH (2014) Peptide nucleic acids: methods and protocols. Humana Press, New York

    Book  Google Scholar 

  19. Ray A, Nordén B (2000) Peptide nucleic acid (PNA): its medical and biotechnical applications and promise for the future. FASEB J 14:1041–1060

    Article  CAS  Google Scholar 

  20. Corradini R, Sforza S, Tedeschi T, Totsingan F, Manicardi A, Marchelli R (2011) Peptide nucleic acids with a structurally biased backbone. Updated review and emerging challenges. Curr Top Med Chem 11:1535–1554

    Article  CAS  Google Scholar 

  21. Englund EA, Appella DH (2007) Gamma-substituted peptide nucleic acids constructed from L-lysine are a versatile scaffold for multifunctional display. Angew Chem Int Ed Engl 46:1414–1418

    Article  CAS  Google Scholar 

  22. Manicardi A, Guidi L, Ghidini A, Corradini R (2014) Pyrene-modified PNAs: Stacking interactions and selective excimer emission in PNA2DNA triplexes. Beilstein J Org Chem 10:1495–1503

    Article  Google Scholar 

  23. Scheibe C, Wedepohl S, Riese SB, Dernedde J, Seitz O (2013) Carbohydrate-PNA and aptamer-PNA conjugates for the spatial screening of lectins and lectin assemblies. Chembiochem 14:236–250

    Article  CAS  Google Scholar 

  24. Winssinger N (2012) DNA display of PNA-tagged ligands: a versatile strategy to screen libraries and control geometry of multidentate ligands. Artif DNA PNA XNA 3:105–108

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel H. Appella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shank, N., George Rosenker, K.M., Englund, E.A., Dix, A.V., Rastede, E.E., Appella, D.H. (2019). Synthesis and Application of LKγT Peptide Nucleic Acids. In: Shank, N. (eds) Non-Natural Nucleic Acids. Methods in Molecular Biology, vol 1973. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9216-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9216-4_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9215-7

  • Online ISBN: 978-1-4939-9216-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics