Skip to main content

Synthesis Protocols for Simple Uncharged Glycol Carbamate Nucleic Acids

  • Protocol
  • First Online:
  • 807 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1973))

Abstract

Glycol carbamate nucleic acid (GCNA) oligomers can be produced from activated carbonate monomers. The synthesized monomers can be very conveniently characterized employing analytical tools like NMR and HR-MS. Moreover, the activated carbonate monomers do not require coupling agents, and hence excess monomers can be recovered at the end of each coupling. Here we illustrate the synthesis of activated glycol carbonate monomers and their subsequent application in synthesis of carbamate oligomers.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–1500

    Article  CAS  PubMed  Google Scholar 

  2. Hendrix C, Rosemeyer H, Verheggen I, Seela F, van Aerschot A, Herdewijn P (1997) 1′,5′-Anhydrohexitol oligonucleotides: synthesis, base pairing and recognition by regular oligodeoxyribonucleotides and oligoribonucleotides. Chem Eur J 3:110–120

    Article  CAS  Google Scholar 

  3. Gait MJ, Jones AS, Walker RT (1974) Synthetic-analogues of polynucleotides XII. Synthesis of thymidine derivatives containing an oxyacetamido- or an oxyformamido-linkage instead of a phosphodiester group. J Chem Soc Perkin 10:1684–1686

    Article  Google Scholar 

  4. Egholm M, Buchardt O, Nielsen PE, Berg RH (1992) Peptide nucleic acids (PNA). Oligonucleotide analogs with an achiral peptide backbone. J Am Chem Soc 114:1895–1897

    Article  CAS  Google Scholar 

  5. Egholm M, Buchardt O, Christensen L, Behrens C, Freier SM, Driver DA, Berg RH, Kim SK, Norden B, Nielsen PE (1993) PNA hybridizes to complementary oligonucleotides obeying the Watson-crick hydrogen-bonding rules. Nature 365:566–568

    Article  CAS  PubMed  Google Scholar 

  6. Schoning KU, Scholz P, Guntha S, Wu X, Krishnamurthy R, Eschenmoser A (2000) Chemical etiology of nucleic acid structure: the α-threofuranosyl-(3′→2′) oligonucleotide system. Science 290:1347–1351

    Article  CAS  PubMed  Google Scholar 

  7. Pallan PS, Wilds CJ, Wawrzak Z, Krishnamurthy R, Eschenmoser A, Egli M (2003) Why does TNA cross-pair more strongly with RNA than with DNA? An answer from X-ray analysis. Angew Chem Int Ed Engl 42:5893–5895

    Article  CAS  PubMed  Google Scholar 

  8. Zhang L, Peritz A, Meggers E (2005) A Simple Glycol Nucleic Acid. J Am Chem Soc 127:4174–4175

    Article  CAS  PubMed  Google Scholar 

  9. Meena KVA (2003) Pyrrolidine carbamate nucleic acids: synthesis and DNA binding studies. Bioorg Med Chem 11:3393–3399

    Article  CAS  PubMed  Google Scholar 

  10. Madhuri V, Kumar VA (2010) Design, synthesis and DNA/RNA binding studies of nucleic acids comprising stereoregular and acyclic polycarbamate backbone: polycarbamate nucleic acids (PCNA). Org Biomol Chem 8:3734–3741

    Article  CAS  PubMed  Google Scholar 

  11. Kotikam V, Fernandes M, Kumar VA (2012) Comparing the interactions of DNA, polyamide (PNA) and polycarbamate nucleic acid (PCNA) oligomers with graphene oxide (GO). Phys Chem Chem Phys 14:15003–15006

    Article  CAS  PubMed  Google Scholar 

  12. Hu F, Zhanga YH, Yaoa ZJ (2007) Parallel synthesis of individual shikimic acid-like molecules using a mixture-operation strategy and ring-closing enyne metathesis. Tetrahedron Lett 48:3511–3515

    Article  CAS  Google Scholar 

  13. Merrifield RB (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85:2149–2154

    Article  CAS  Google Scholar 

  14. Dueholm KL, Egholm M, Behrens C, Christensen L, Hansen HF, Vulpius T, Petersen KH, Berg RH, Nielsen PE, Buchardt O (1994) Synthesis of peptide nucleic acid monomers containing the four natural nucleobases: thymine, cytosine, adenine, and guanine and their Oligomerization. J Org Chem 59:5767–5773

    Article  CAS  Google Scholar 

  15. Gisin BF (1972) The monitoring of reactions in solid-phase peptide synthesis with picric acid. Anal Chim Acta 58:248–249

    Article  CAS  PubMed  Google Scholar 

  16. Kaiser E, Colescott RL, Bossinger CD, Cook PI (1970) Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem 34:595–598

    Article  CAS  PubMed  Google Scholar 

  17. Beavis RC, Chait BT (1989) Matrix-assisted laser-desorption mass spectrometry using 355 nm radiation. Rapid Commun Mass Spectrom 3(12):436–439

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

T.B. acknowledges Senior Research Fellowship from CSIR, New Delhi. V.A.K. acknowledges financial support from CSIR, New Delhi (BSC0123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaijayanti A. Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bose, T., Kumar, V.A. (2019). Synthesis Protocols for Simple Uncharged Glycol Carbamate Nucleic Acids. In: Shank, N. (eds) Non-Natural Nucleic Acids. Methods in Molecular Biology, vol 1973. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9216-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9216-4_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9215-7

  • Online ISBN: 978-1-4939-9216-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics