Skip to main content

2′-C,4′-C-Ethyleneoxy-Bridged 2′-Deoxyribonucleic Acids (EoDNAs) with Thymine Nucleobases: Synthesis, Duplex-Forming Ability, and Enzymatic Stability

  • Protocol
  • First Online:
Non-Natural Nucleic Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1973))

Abstract

This chapter describes procedures for (1) the synthesis of six 2′-C,4′-C-ethyleneoxy-bridged thymidine phosphoramidites, i.e., methylene-EoDNA-T, (R)-Me-methylene-EoDNA-T, (S)-Me-methylene-EoDNA-T, EoDNA-T, (R)-Me-EoDNA-T, and (S)-Me-EoDNA-T phosphoramidites, (2) the introduction of the phosphoramidites into oligonucleotides, (3) UV-melting experiments of the duplexes of the modified oligonucleotides and complementary RNA, and (4) nuclease degradation experiments of the modified oligonucleotides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yamamoto T, Nakatani M, Narukawa K, Obika S (2011) Antisense drug discovery and development. Future Med Chem 3:339–365

    Article  CAS  PubMed  Google Scholar 

  2. Sharma VK, Rungta P, Prasad AK (2014) Nucleic acid therapeutics: basic concepts and recent developments. RSC Adv 4:16618–16631

    Article  CAS  Google Scholar 

  3. Lam JKW, Chow MYT, Zhang Y, Leung SWS (2015) siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids 4:e252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wan WB, Seth PP (2016) The medicinal chemistry of therapeutic oligonucleotides. J Med Chem 59:9645–9667

    Article  CAS  PubMed  Google Scholar 

  5. Sridharan K, Gogtay NJ (2016) Therapeutic nucleic acids: current clinical status. Br J Clin Pharmacol 82:659–672

    Article  PubMed  PubMed Central  Google Scholar 

  6. Morihiro K, Kasahara Y, Obika S (2017) Biological applications of xeno nucleic acids. Mol BioSyst 13:235–245

    Article  CAS  PubMed  Google Scholar 

  7. Khvorova A, Watts JK (2017) The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotechnol 35:238–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kaur H, Babu BR, Maiti S (2007) Perspectives on chemistry and therapeutic applications of locked nucleic acid (LNA). Chem Rev 107:4672–4697

    Article  CAS  PubMed  Google Scholar 

  9. Veedu RN, Wengel J (2010) Locked nucleic acids: promising nucleic acid analogs for therapeutic applications. Chem Biodivers 7:536–542

    Article  CAS  PubMed  Google Scholar 

  10. Hagedorn PH, Persson R, Funder ED, Albæk N, Diemer SL, Hansen DJ, Møller MR, Papargyri N, Christiansen H, Hansen BR, Hansen HF, Jensen MA, Koch T (2017) Locked nucleic acid: modality, diversity, and drug discovery. Drug Discov Today 23:101–114

    Article  PubMed  Google Scholar 

  11. Obika S, Rahman SMA, Fujisaka A, Kawada Y, Baba T, Imanishi T (2010) Bridged nucleic acids: development, synthesis and properties. Heterocycles 81:1347–1392

    Article  CAS  Google Scholar 

  12. Zhou C, Chattopadhyaya J (2012) Intramolecular free-radical cyclization reactions on pentose sugars for the synthesis of carba-LNA and carba-ENA and the application of their modified oligonucleotides as potential RNA targeted therapeutics. Chem Rev 112:3808–3832

    Article  CAS  PubMed  Google Scholar 

  13. Hari Y, Obika S (2016) Synthesis and properties of 2′,4′-bridged nucleic acids containing multiple heteroatoms in the bridges. J Syn Org Chem Jpn 74:141–153. (in Japanese)

    Article  CAS  Google Scholar 

  14. Hari Y, Morikawa T, Osawa T, Obika S (2013) Synthesis and properties of 2′-O,4′-C-ethyleneoxy bridged 5-methyluridine. Org Lett 15:3702–3705

    Article  CAS  PubMed  Google Scholar 

  15. Osawa T, Obika S, Hari Y (2016) Synthesis and properties of novel 2′-C,4′-C-ethyleneoxy-bridged 2′-deoxyribonucleic acids with exocyclic methylene groups. Org Biomol Chem 14:9481–9484

    Article  CAS  PubMed  Google Scholar 

  16. Osawa T, Sawamura M, Wada F, Yamamoto T, Obika S, Hari Y (2017) Synthesis, duplex-forming ability, enzymatic stability, and in vitro antisense potency of oligonucleotides including 2′-C,4′-C-ethyleneoxy-bridged thymidine derivatives. Org Biomol Chem 15:3955–3963

    Article  CAS  PubMed  Google Scholar 

  17. Hakimelahi GH, Proba ZA, Ogilvie KK (1982) New catalysts and procedures for the dimethoxytritylation and selective silylation of ribonucleosides. Can J Chem 60:1106–1113

    Article  CAS  Google Scholar 

  18. Hayakawa Y, Uchiyama M, Noyori R (1986) Nonaqueous oxidation of nucleoside phosphites to the phosphates. Tetrahedron Lett 27:4191–4194

    Article  CAS  Google Scholar 

  19. Smyslova P, Poga I, Lyčka A, Tejral G, Hlavac J (2015) Non-catalyzed click reactions of ADIBO derivatives with 5-methyluridine azides and conformational study of the resulting triazoles. PLoS One 10:e0144613

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tarköy M, Bolli M, Leumann C (1994) Synthesis, pairing properties, and calorimetric determination of duplex and triplex stability of decanucleotides from [(3′S,5′R)-2′-deoxy-3′,5′-ethano-β-d-ribofuranosyl]adenine and-thymine. Helv Chim Acta 77:716–744

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiyuki Hari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Osawa, T., Obika, S., Hari, Y. (2019). 2′-C,4′-C-Ethyleneoxy-Bridged 2′-Deoxyribonucleic Acids (EoDNAs) with Thymine Nucleobases: Synthesis, Duplex-Forming Ability, and Enzymatic Stability. In: Shank, N. (eds) Non-Natural Nucleic Acids. Methods in Molecular Biology, vol 1973. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9216-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9216-4_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9215-7

  • Online ISBN: 978-1-4939-9216-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics