Skip to main content

Site-Specific Labeling of DNA via PCR with an Expanded Genetic Alphabet

  • Protocol
  • First Online:
Non-Natural Nucleic Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1973))

Abstract

The polymerase chain reaction (PCR) is a universal and essential tool in molecular biology and biotechnology, but it is generally limited to the amplification of DNA with the four-letter genetic alphabet. Here, we describe PCR amplification with a six-letter alphabet that includes the two natural dA-dT and dG-dC base pairs and an unnatural base pair (UBP) formed between the synthetic nucleotides dNaM and d5SICS or dTPT3 or analogs of these synthetic nucleotides modified with linkers that allow for the site-specific labeling of the amplified DNA with different functional groups. Under standard conditions, the six-letter DNA may be amplified with high efficiency and with greater than 99.9% fidelity. This allows for the efficient production of DNA site-specifically modified with different functionalities of interest for use in a wide range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Battersby TR, Ang DN, Burgstaller P, Jurczyk SC, Bowser MT, Buchanan DD, Kennedy RT, Benner SA (1999) Quantitative analysis of receptors for adenosine nucleotides obtained via in vitro selection from a library incorporating a cationic nucleotide analog. J Am Chem Soc 121:9781–9789

    CAS  PubMed Central  Google Scholar 

  2. Brakmann S, Lobermann S (2001) High-density labeling of DNA: preparation and characterization of the target material for single-molecule sequencing. Angew Chem Int Ed 40:1427–1429

    CAS  Google Scholar 

  3. Gourlain T, Sidorov A, Mignet N, Thorpe SJ, Lee SE, Grasby JA, Williams DM (2001) Enhancing the catalytic repertoire of nucleic acids. II. Simultaneous incorporation of amino and imidazolyl functionalities by two modified triphosphates during PCR. Nucleic Acids Res 29:1898–1905

    CAS  PubMed Central  Google Scholar 

  4. Hocek M, Fojta M (2011) Nucleobase modification as redox DNA labelling for electrochemical detection. Chem Soc Rev 40:5802–5814

    CAS  PubMed Central  Google Scholar 

  5. Jager S, Rasched G, Kornreich-Leshem H, Engeser M, Thum O, Famulok M (2005) A versatile toolbox for variable DNA functionalization at high density. J Am Chem Soc 127:15071–15082

    PubMed Central  Google Scholar 

  6. Kuwahara M, Nagashima J, Hasegawa M, Tamura T, Kitagata R, Hanawa K, Hososhima S, Kasamatsu T, Ozaki H, Sawai H (2006) Systematic characterization of 2′-deoxynucleoside- 5′-triphosphate analogs as substrates for DNA polymerases by polymerase chain reaction and kinetic studies on enzymatic production of modified DNA. Nucleic Acids Res 34:5383–5394

    CAS  PubMed Central  Google Scholar 

  7. Mehedi Masud M, Ozaki-Nakamura A, Kuwahara M, Ozaki H, Sawai H (2003) Modified DNA bearing 5(methoxycarbonylmethyl)-2′-deoxyuridine: preparation by PCR with thermophilic DNA polymerase and postsynthetic derivatization. Chembiochem 4:584–588

    PubMed Central  Google Scholar 

  8. Perrin DM, Garestier T, Helene C (1999) Expanding the catalytic repertoire of nucleic acid catalysts: simultaneous incorporation of two modified deoxyribonucleoside triphosphates bearing ammonium and imidazolyl functionalities. Nucleosides Nucleotides 18:377–391

    CAS  PubMed Central  Google Scholar 

  9. Held HA, Benner SA (2002) Challenging artificial genetic systems: thymidine analogs with 5-position sulfur functionality. Nucleic Acids Res 30:3857–3869

    CAS  PubMed Central  Google Scholar 

  10. Hollenstein M, Hipolito CJ, Lam CH, Perrin DM (2009) A self-cleaving DNA enzyme modified with amines, guanidines and imidazoles operates independently of divalent metal cations (M-2). Nucleic Acids Res 37:1638–1649

    CAS  PubMed Central  Google Scholar 

  11. Lee SE, Sidorov A, Gourlain T, Mignet N, Thorpe SJ, Brazier JA, Dickman MJ, Hornby DP, Grasby JA, Williams DM (2001) Enhancing the catalytic repertoire of nucleic acids: a systematic study of linker length and rigidity. Nucleic Acids Res 29:1565–1573

    CAS  PubMed Central  Google Scholar 

  12. Roychowdhury A, Illangkoon H, Hendrickson CL, Benner SA (2004) 2′-deoxycytidines carrying amino and thiol functionality: synthesis and incorporation by Vent (exo-) polymerase. Org Lett 6:489–492

    CAS  Google Scholar 

  13. Sakthivel K, Barbas CF III (1998) Expanding the potential of DNA for binding and catalysis: highly functionalized dUTP derivatives that are substrates for thermostable DNA polymerases. Angew Chem Int Ed 37:2872–2875

    CAS  Google Scholar 

  14. Tasara T, Angerer B, Damond M, Winter H, Dorhofer S, Hubscher U, Amacker M (2003) Incorporation of reporter molecule-labeled nucleotides by DNA polymerases. II. High-density labeling of natural DNA. Nucleic Acids Res 31:2636–2646

    CAS  PubMed Central  Google Scholar 

  15. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    CAS  Google Scholar 

  16. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    CAS  Google Scholar 

  17. Atanasova P, Weitz RT, Gerstel P, Srot V, Kopold P, van Aken PA, Burghard M, Bill J (2009) DNA-templated synthesis of ZnO thin layers and nanowires. Nanotechnology 20:365302

    Google Scholar 

  18. Hoffmann RC, Atanasova P, Dilfer S, Bill J, Schneider JJ (2011) Templating of polycrystalline ZnO with DNA and its performance in field-effect transistors. Phys Status Solidi A 208:1983–1988

    CAS  Google Scholar 

  19. Lazareck AD, Cloutier SG, Kuo TF, Taft BJ, Kelley SO, Xu JM (2006) DNA-directed synthesis of zinc oxide nanowires on carbon nanotube tips. Nanotechnology 17:2661–2664

    CAS  Google Scholar 

  20. Fritzsche W, Bier FF (2008) DNA-based nanodevices: international symposium on DNA-based nanodevices. American Institute of Physics, Melville, NY

    Google Scholar 

  21. Chen T, Hongdilokkul N, Liu Z, Thirunavukarasu D, Romesberg FE (2016) The expanding world of DNA and RNA. Curr Opin Chem Biol 34:80–87

    CAS  PubMed Central  Google Scholar 

  22. Chen T, Romesberg FE (2014) Directed polymerase evolution. FEBS Lett 588:219–229

    CAS  Google Scholar 

  23. Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738

    CAS  Google Scholar 

  24. Franklin RE, Gosling RG (1953) Evidence for 2-chain helix in crystalline structure of sodium deoxyribonucleate. Nature 172:156–157

    CAS  Google Scholar 

  25. Piccirilli JA, Krauch T, Moroney SE, Benner SA (1990) Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet. Nature 343:33–37

    CAS  Google Scholar 

  26. Switzer CY, Moroney SE, Benner SA (1993) Enzymatic recognition of the base pair between isocytidine and isoguanosine. Biochemistry 32:10489–10496

    CAS  Google Scholar 

  27. Yang Z, Chen F, Chamberlin SG, Benner SA (2010) Expanded genetic alphabets in the polymerase chain reaction. Angew Chem Int Ed 49:177–180

    CAS  Google Scholar 

  28. Moran S, Ren RXF, Rumney S, Kool ET (1997) Difluorotoluene, a nonpolar isostere for thymine, codes specifically and efficiently for adenine in DNA replication. J Am Chem Soc 119:2056–2057

    CAS  PubMed Central  Google Scholar 

  29. Betz K, Malyshev DA, Lavergne T, Welte W, Diederichs K, Dwyer TJ, Ordoukhanian P, Romesberg FE, Marx A (2012) KlenTaq polymerase replicates unnatural base pairs by inducing a Watson-Crick geometry. Nat Chem Biol 8:612–614

    CAS  PubMed Central  Google Scholar 

  30. McMinn DL, Ogawa AK, Wu Y, Liu J, Schultz PG, Romesberg FE (1999) Efforts toward expansion of the genetic alphabet: DNA polymerase recognition of a highly stable, self-pairing hydrophobic base. J Am Chem Soc 121:11585–11586

    CAS  Google Scholar 

  31. Kimoto M, Kawai R, Mitsui T, Yokoyama S, Hirao I (2008) An unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules. Nucleic Acids Res 37:e14

    PubMed Central  Google Scholar 

  32. Yamashige R, Kimoto M, Takezawa Y, Sato A, Mitsui T, Yokoyama S, Hirao I (2011) Highly specific unnatural base pair systems as a third base pair for PCR amplification. Nucleic Acids Res 40:2793–2806

    PubMed Central  Google Scholar 

  33. Zhang L, Yang Z, Sefah K, Bradley KM, Hoshika S, Kim MJ, Kim HJ, Zhu G, Jimenez E, Cansiz S, Teng IT, Champanhac C, McLendon C, Liu C, Zhang W, Gerloff DL, Huang Z, Tan W, Benner SA (2015) Evolution of functional six-nucleotide DNA. J Am Chem Soc 137:6734–6737

    CAS  PubMed Central  Google Scholar 

  34. Biondi E, Lane JD, Das D, Dasgupta S, Piccirilli JA, Hoshika S, Bradley KM, Krantz BA, Benner SA (2016) Laboratory evolution of artificially expanded DNA gives redesignable aptamers that target the toxic form of anthrax protective antigen. Nucleic Acids Res 44:9565–9577

    CAS  PubMed Central  Google Scholar 

  35. Zhang L, Yang Z, Le Trinh T, Teng IT, Wang S, Bradley KM, Hoshika S, Wu Q, Cansiz S, Rowold DJ, McLendon C, Kim MS, Wu Y, Cui C, Liu Y, Hou W, Stewart K, Wan S, Liu C, Benner SA, Tan W (2016) Aptamers against cells overexpressing glypican 3 from expanded genetic systems combined with cell engineering and laboratory evolution. Angew Chem Int Ed 55:12372–12375

    CAS  Google Scholar 

  36. Kimoto M, Yamashige R, Matsunaga K, Yokoyama S, Hirao I (2013) Generation of high-affinity DNA aptamers using an expanded genetic alphabet. Nat Biotechnol 31:453–457

    CAS  Google Scholar 

  37. Matsunaga KI, Kimoto M, Hirao I (2017) High-affinity DNA aptamer generation targeting von Willebrand Factor A1-domain by genetic alphabet expansion for systematic evolution of ligands by exponential enrichment using two types of libraries composed of five different bases. J Am Chem Soc 139:324–334

    CAS  Google Scholar 

  38. Seo YJ, Hwang GT, Ordoukhanian P, Romesberg FE (2009) Optimization of an unnatural base pair toward natural-like replication. J Am Chem Soc 131:3246–3252

    CAS  PubMed Central  Google Scholar 

  39. Seo YJ, Matsuda S, Romesberg FE (2009) Transcription of an expanded genetic alphabet. J Am Chem Soc 131:5046–5047

    CAS  PubMed Central  Google Scholar 

  40. Malyshev DA, Dhami K, Quach HT, Lavergne T, Ordoukhanian P, Torkamani A, Romesberg FE (2012) Efficient and sequence-independent replication of DNA containing a third base pair establishes a functional six-letter genetic alphabet. Proc Natl Acad Sci U S A 109:12005–12010

    CAS  PubMed Central  Google Scholar 

  41. Zhang Y, Ptacin JL, Fischer EC, Aerni HR, Caffaro CE, San Jose K, Feldman AW, Turner CR, Romesberg FE (2017) A semi-synthetic organism that stores and retrieves increased genetic information. Nature 551(7682):644–647

    CAS  PubMed Central  Google Scholar 

  42. Lavergne T, Lamichhane R, Malyshev DA, Li Z, Li L, Sperling E, Williamson JR, Millar DP, Romesberg FE (2016) FRET characterization of complex conformational changes in a large 16S ribosomal RNA fragment site-specifically labeled using unnatural base pairs. ACS Chem Biol 11:1347–1353

    CAS  PubMed Central  Google Scholar 

  43. Li L, Degardin M, Lavergne T, Malyshev DA, Dhami K, Ordoukhanian P, Romesberg FE (2014) Natural-like replication of an unnatural base pair for the expansion of the genetic alphabet and biotechnology applications. J Am Chem Soc 136:826–829

    CAS  Google Scholar 

  44. Seo YJ, Malyshev DA, Lavergne T, Ordoukhanian P, Romesberg FE (2011) Site-specific labeling of DNA and RNA using an efficiently replicated and transcribed class of unnatural base pairs. J Am Chem Soc 133:19878–19888

    CAS  PubMed Central  Google Scholar 

  45. Uter NT, Perona JJ (2006) Active-site assembly in glutaminyl-tRNA synthetase by tRNA-mediated induced fit. Biochemistry 45:6858–6865

    CAS  PubMed Central  Google Scholar 

  46. Heckman KL, Pease LR (2007) Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protoc 2:924–932

    CAS  Google Scholar 

  47. Burke E, Barik S (2003) Megaprimer PCR: application in mutagenesis and gene fusion. Methods Mol Biol 226:525–532

    CAS  Google Scholar 

  48. Korbie DJ, Mattick JS (2008) Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat Protoc 3:1452–1456

    CAS  Google Scholar 

  49. Ludwig J, Eckstein F (1989) Rapid and efficient synthesis of nucleoside 5′-0-(1-thiotriphosphates), 5′-triphosphates and 2′,3′-cyclophosphorothioates using 2-chloro-4H-1,3,2-benzodioxaphosphorin-4-one. J Org Chem 54:631

    CAS  Google Scholar 

  50. Lavergne T, Malyshev DA, Romesberg FE (2012) Major groove substituents and polymerase recognition of a class of predominantly hydrophobic unnatural base pairs. Chem Eur J 18:1231–1239

    CAS  Google Scholar 

  51. Malyshev DA, Seo YJ, Ordoukhanian P, Romesberg FE (2009) PCR with an expanded genetic alphabet. J Am Chem Soc 131:14620–14621

    CAS  PubMed Central  Google Scholar 

  52. Malyshev DA, Dhami K, Lavergne T, Chen T, Dai N, Foster JM, Correa IR Jr, Romesberg FE (2014) A semi-synthetic organism with an expanded genetic alphabet. Nature 509:385–388

    CAS  PubMed Central  Google Scholar 

  53. Morris SE, Feldman AW, Romesberg FE (2017) Synthetic biology parts for the storage of increased genetic information in cells. ACS Synth Biol 6(10):1834–1840. https://doi.org/10.1021/acssynbio.1027b00115

    Article  CAS  PubMed Central  Google Scholar 

  54. New England Biolabs. (2018) Polymerase Overview. PCR Reagents, Version 10.0, New England Biolabs, Ipswich, MA, p 2

    Google Scholar 

  55. Andrus A, Kuimelis RG (2001) Polyacrylamide gel electrophoresis (PAGE) of synthetic nucleic acids. Curr Prot Nucleic Acids Chem Chapter 10:Unit 10.4

    CAS  Google Scholar 

  56. Li Z, Lavergne T, Malyshev DA, Zimmermann J, Adhikary R, Dhami K, Ordoukhanian P, Sun Z, Xiang J, Romesberg FE (2013) Site-specifically arraying small molecules or proteins on DNA using an expanded genetic alphabet. Chem Eur J 19:14205–14209

    CAS  Google Scholar 

  57. Binladen J, Gilbert MT, Campos PF, Willerslev E (2007) 5′-tailed sequencing primers improve sequencing quality of PCR products. BioTechniques 42:174–176

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jodie Chin, Kirandeep Dhami, Henry Quach, Dr. Phillip Ordoukhanian, and Dr. Thomas Lavergne for helpful discussions and assistance with editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Floyd E. Romesberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ledbetter, M.P., Malyshev, D.A., Romesberg, F.E. (2019). Site-Specific Labeling of DNA via PCR with an Expanded Genetic Alphabet. In: Shank, N. (eds) Non-Natural Nucleic Acids. Methods in Molecular Biology, vol 1973. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9216-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9216-4_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9215-7

  • Online ISBN: 978-1-4939-9216-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics