On-Line Immunoaffinity Solid-Phase Extraction Capillary Electrophoresis-Mass Spectrometry for the Analysis of Serum Transthyretin

  • Roger Pero-Gascon
  • Laura Pont
  • Victoria Sanz-NebotEmail author
  • Fernando Benavente
Part of the Methods in Molecular Biology book series (MIMB, volume 1972)


The analysis of low abundant proteins in biological fluids by capillary electrophoresis (CE) is particularly problematic due to the typically poor concentration limits of detection of microscale separation techniques. Another important issue is sample matrix complexity that requires an appropriate cleanup. Here, we describe an on-line immunoaffinity solid-phase extraction capillary electrophoresis-mass spectrometry (IA-SPE-CE-MS) method for the immunoextraction, preconcentration, separation, detection, and characterization of serum transthyretin (TTR). TTR is a protein biomarker related to diverse types of amyloidosis, such as familial amyloidotic polyneuropathy type I (FAP-I), which is the most common hereditary systemic amyloidosis.

Key words

Analyte concentrator Capillary electrophoresis Immunopurification In-line Mass spectrometry Microcartridge On-line Preconcentration Sensitivity Solid-phase extraction Transthyretin 



This study was supported by a grant from the Spanish Ministry of Economy and Competitiveness (CTQ2014-56777-R). Roger Pero-Gascon acknowledges the Spanish Ministry of Education, Culture and Sport for a FPU (Formación del Profesorado Universitario) fellowship. We also thank Dr. C. Casasnovas and Dr. M. A. Alberti (Hospital Universitari de Bellvitge, HUB, Hospitalet de Llobregat, Spain) for providing the blood samples.


  1. 1.
    Kašička V (2018) Recent developments in capillary and microchip electroseparations of peptides (2015–mid 2017). Electrophoresis 39:209–234CrossRefGoogle Scholar
  2. 2.
    Wenz C, Barbas C, López-Gonzálvez Á et al (2015) Interlaboratory study to evaluate the robustness of capillary electrophoresis-mass spectrometry for peptide mapping. J Sep Sci 38:3262–3270CrossRefGoogle Scholar
  3. 3.
    Faserl K, Sarg B, Maurer V et al (2017) Exploiting charge differences for the analysis of challenging post-translational modifications by capillary electrophoresis-mass spectrometry. J Chromatogr A 1498:215–223CrossRefGoogle Scholar
  4. 4.
    Štěpánová S, Kašička V (2016) Recent applications of capillary electromigration methods to separation and analysis of proteins. Anal Chim Acta 933:23–42CrossRefGoogle Scholar
  5. 5.
    Breadmore MC, Tubaon RM, Shallan AI et al (2015) Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2012–2014). Electrophoresis 36:36–61CrossRefGoogle Scholar
  6. 6.
    Breadmore MC, Wuethrich A, Li F et al (2017) Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2014–2016). Electrophoresis 38:33–59CrossRefGoogle Scholar
  7. 7.
    Guzman NA, Phillips TM (2011) Immunoaffinity capillary electrophoresis: a new versatile tool for determining protein biomarkers in inflammatory processes. Electrophoresis 32:1565–1578PubMedGoogle Scholar
  8. 8.
    Benavente F, Medina-Casanellas S, Giménez E et al (2016) On-line solid-phase extraction capillary electrophoresis mass spectrometry for preconcentration and clean-up of peptides and proteins. In: Tran NT, Taverna M (eds) Capillary electrophoresis of proteins and peptides: methods and protocols. Springer, New York, pp 67–84CrossRefGoogle Scholar
  9. 9.
    Ramautar R, Somsen GW, de Jong GJ (2016) Developments in coupled solid-phase extraction–capillary electrophoresis 2013–2015. Electrophoresis 37:35–44CrossRefGoogle Scholar
  10. 10.
    Wuethrich A, Quirino JP (2018) Derivatisation for separation and detection in capillary electrophoresis (2015–2017). Electrophoresis 39:82–96CrossRefGoogle Scholar
  11. 11.
    Zhu G, Sun L, Yan X et al (2013) Single-shot proteomics using capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry with production of more than 1 250 escherichia coli peptide identifications in a 50 min separation. Anal Chem 85:2569–2573CrossRefGoogle Scholar
  12. 12.
    Guo X, Fillmore TL, Gao Y et al (2016) Capillary electrophoresis-nanoelectrospray ionization-selected reaction monitoring mass spectrometry via a true sheathless metal-coated emitter interface for robust and high-sensitivity sample quantification. Anal Chem 88:4418–4425CrossRefGoogle Scholar
  13. 13.
    Ludwig KR, Sun L, Zhu G et al (2015) Over 2300 phosphorylated peptide identifications with single-shot capillary zone electrophoresis-tandem mass spectrometry in a 100 min separation. Anal Chem 87:9532–9537CrossRefGoogle Scholar
  14. 14.
    Guzman NA, Park SS, Schaufelberger D et al (1997) New approaches in clinical chemistry: on-line analyte concentration and microreaction capillary electrophoresis for the determination of drugs, metabolic intermediates, and biopolymers in biological fluids. J Chromatogr B Biomed Appl 697:37–66CrossRefGoogle Scholar
  15. 15.
    Stoyanov AV, Liu Z, Pawliszyn J (2003) CE in a nonuniform capillary modulated by a cylindrical insert, and zone-narrowing effects during sample injection. Anal Chem 75:3656–3659CrossRefGoogle Scholar
  16. 16.
    Ortiz-Villanueva E, Benavente F, Giménez E et al (2014) Preparation and evaluation of open tubular C18-silica monolithic microcartridges for preconcentration of peptides by on-line solid phase extraction capillary electrophoresis. Anal Chim Acta 846:51–59CrossRefGoogle Scholar
  17. 17.
    Marechal A, Jarrosson F, Randon J et al (2015) In-line coupling of an aptamer based miniaturized monolithic affinity preconcentration unit with capillary electrophoresis and laser induced fluorescence detection. J Chromatogr A 1406:109–117CrossRefGoogle Scholar
  18. 18.
    Moreno-González D, Lara FJ, Gámiz-Gracia L et al (2014) Molecularly imprinted polymer as in-line concentrator in capillary electrophoresis coupled with mass spectrometry for the determination of quinolones in bovine milk samples. J Chromatogr A 1360:1–8CrossRefGoogle Scholar
  19. 19.
    Rashkovetsky LG, Lyubarskaya YV, Foret F et al (1997) Automated microanalysis using magnetic beads with commercial capillary electrophoretic instrumentation. J Chromatogr A 781:197–204CrossRefGoogle Scholar
  20. 20.
    Medina-Casanellas S, Domínguez-Vega E, Benavente F et al (2014) Low-picomolar analysis of peptides by on-line coupling of fritless solid-phase extraction to sheathless capillary electrophoresis-mass spectrometry. J Chromatogr A 1328:1–6CrossRefGoogle Scholar
  21. 21.
    Guzman NA, Guzman DE (2016) An emerging micro-scale immuno-analytical diagnostic tool to see the unseen. Holding promise for precision medicine and P4 medicine. J Chromatogr B Anal Technol Biomed Life Sci 1021:14–29CrossRefGoogle Scholar
  22. 22.
    Guzman NA, Guzman DE (2018) From a central laboratory to the bedside: a point-of-care instrument for monitoring wellness and disease using two-dimensional immunoaffinity capillary electrophoresis technology. Archiv Biomed Res 1(1):001Google Scholar
  23. 23.
    Ortiz-Martin L, Benavente F, Medina-Casanellas S et al (2015) Study of immobilized metal affinity chromatography sorbents for the analysis of peptides by on-line solid-phase extraction capillary electrophoresis-mass spectrometry. Electrophoresis 36:962–970CrossRefGoogle Scholar
  24. 24.
    Yamamoto S, Suzuki S, Suzuki S (2012) Microchip electrophoresis of oligosaccharides using lectin-immobilized preconcentrator gels fabricated by in situ photopolymerization. Analyst 137:2211–2217CrossRefGoogle Scholar
  25. 25.
    Medina-Casanellas S, Benavente F, Barbosa J et al (2012) Preparation and evaluation of an immunoaffinity sorbent for the analysis of opioid peptides by on-line immunoaffinity solid-phase extraction capillary electrophoresis-mass spectrometry. Anal Chim Acta 717:134–142CrossRefGoogle Scholar
  26. 26.
    Medina-Casanellas S, Benavente F, Barbosa J et al (2013) Preparation and evaluation of an immunoaffinity sorbent with Fab’ antibody fragments for the analysis of opioid peptides by on-line immunoaffinity solid-phase extraction capillary electrophoresis-mass spectrometry. Anal Chim Acta 789:91–99CrossRefGoogle Scholar
  27. 27.
    Giménez E, Benavente F, de Bolós C et al (2009) Analysis of recombinant human erythropoietin and novel erythropoiesis stimulating protein digests by immunoaffinity capillary electrophoresis-mass spectrometry. J Chromatogr A 1216:2574–2582CrossRefGoogle Scholar
  28. 28.
    Pero-Gascon R, Pont L, Benavente F et al (2016) Analysis of serum transthyretin by on-line immunoaffinity solid-phase extraction capillary electrophoresis mass spectrometry using magnetic beads. Electrophoresis 37:1220–1231CrossRefGoogle Scholar
  29. 29.
    Pont L, Benavente F, Barbosa J et al (2017) On-line immunoaffinity solid-phase extraction capillary electrophoresis mass spectrometry using Fab’antibody fragments for the analysis of serum transthyretin. Talanta 170:224–232CrossRefGoogle Scholar
  30. 30.
    Kudr J, Haddad Y, Richtera L et al (2017) Magnetic nanoparticles: from design and synthesis to real world applications. Nano 7:243Google Scholar
  31. 31.
    Farka Z, Juřík T, Kovář D et al (2017) Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges. Chem Rev 117:9973–10042CrossRefGoogle Scholar
  32. 32.
    Morales-Cid G, Diez-Masa JC, de Frutos M (2013) On-line immunoaffinity capillary electrophoresis based on magnetic beads for the determination of alpha-1 acid glycoprotein isoforms profile to facilitate its use as biomarker. Anal Chim Acta 773:89–96CrossRefGoogle Scholar
  33. 33.
    Gasilova N, Girault HH (2014) Component-resolved diagnostic of cow’s milk allergy by immunoaffinity capillary electrophoresis-matrix assisted laser desorption/ionization mass spectrometry. Anal Chem 86:6337–6345CrossRefGoogle Scholar
  34. 34.
    Baciu T, Borrull F, Neusüß C et al (2016) Capillary electrophoresis combined in-line with solid-phase extraction using magnetic particles as new adsorbents for the determination of drugs of abuse in human urine. Electrophoresis 37:1232–1244CrossRefGoogle Scholar
  35. 35.
    Toby TK, Fornelli L, Kelleher NL (2016) Progress in top-down proteomics and the analysis of proteoforms. Annu Rev Anal Chem 9:499–519CrossRefGoogle Scholar
  36. 36.
    Ando Y, Suhr O, Yamashita T et al (1997) Detection of different forms of variant transthyretin (Met30) in cerebrospinal fluid. Neurosci Lett 238:123–126CrossRefGoogle Scholar
  37. 37.
    Ando Y, Ueda M (2012) Diagnosis and therapeutic approaches to transthyretin amyloidosis. Curr Med Chem 19:2312–2323CrossRefGoogle Scholar
  38. 38.
    Théberge R, Connors L, Skinner M et al (1999) Characterization of transthyretin mutants from serum using immunoprecipitation, HPLC/electrospray ionization and matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 71:452–459CrossRefGoogle Scholar
  39. 39.
    Nakanishi T, Sato T, Sakoda S et al (2004) Modification of cysteine residue in transthyretin and a synthetic peptide: analyses by electrospray ionization mass spectrometry. Biochim Biophys Acta 1698:45–53CrossRefGoogle Scholar
  40. 40.
    Poulsen K, Bahl JMC, Tanassi JT et al (2012) Characterization and stability of transthyretin isoforms in cerebrospinal fluid examined by immunoprecipitation and high-resolution mass spectrometry of intact protein. Methods (San Diego, Calif) 56:284–292CrossRefGoogle Scholar
  41. 41.
    Pont L, Poturcu K, Benavente F et al (2016) Comparison of capillary electrophoresis and capillary liquid chromatography coupled to mass spectrometry for the analysis of transthyretin in human serum. J Chromatogr A 1444:145–153CrossRefGoogle Scholar
  42. 42.
    Pont L, Benavente F, Barbosa J et al (2015) Analysis of transthyretin in human serum by capillary zone electrophoresis electrospray ionization time-of-flight mass spectrometry. Application to familial amyloidotic polyneuropathy type I. Electrophoresis 36:1265–1273CrossRefGoogle Scholar
  43. 43.
    Pont L, Benavente F, Vilaseca M et al (2015) Characterisation of serum transthyretin by electrospray ionisation-ion mobility mass spectrometry: application to familial amyloidotic polyneuropathy type I (FAP-I). Talanta 144:1216–1224CrossRefGoogle Scholar
  44. 44.
    Lauer HH, Rozing GP (2014) High performance capillary electrophoresis. Agilent technologies, Waldbronn, pp 60–61Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Roger Pero-Gascon
    • 1
  • Laura Pont
    • 1
  • Victoria Sanz-Nebot
    • 1
    Email author
  • Fernando Benavente
    • 1
  1. 1.Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB)University of BarcelonaBarcelonaSpain

Personalised recommendations