Skip to main content

Aptamer-Based Microchip Electrophoresis Assays for Amplification Detection of Carcinoembryonic Antigen

  • Protocol
  • First Online:
Clinical Applications of Capillary Electrophoresis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1972))

Abstract

Microchip electrophoresis (MCE), regarded as a miniaturized version of capillary electrophoresis (CE), has exhibited prominent advantages in terms of low sample consumption, rapid analysis times, easy operation, efficient resolution of compounds, and increased throughput. This technology has led to more research focus on analysis particularly in hospital settings for clinical diagnostics. However, since the channels in microchip are very small, achieving the desired assay sensitivity on a microfluidic platform remains a challenge. Here, we describe aptamer-based MCE assays for amplification detection of carcinoembryonic antigen (CEA) in human serum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kimura H, Matsuzawa S, Tu CY, Kitamori T, Sawada T (1996) Ultrasensitive heterogeneous immunoassay using photothermal deflection spectroscopy. 2. Quantitation of ultratrace carcinoembryonic antigen in human sera. Anal Chem 68:3063–3067

    Article  CAS  Google Scholar 

  2. Seker D, Kaya O, Adabag A, Necipoglu G, Baran I (2003) Role of preoperative plasma CA 15-3 and carcinoembryonic antigen levels in determining histopathologic conventional prognostic factors for breast cancer. World J Surg 27:519–521

    Article  Google Scholar 

  3. Shen GY, Wang H, Deng T, Shen GL, Yu RQ (2005) A novel piezoelectric immunosensor for detection of carcinoembryonic antigen. Talanta 67:217–220

    Article  CAS  Google Scholar 

  4. Liu Y, Jiang H (2006) Electroanalytical determination of carcinoembryonic antigen at a silica nanoparticles/titania sol-gel composite membrane-modified gold electrode. Electroanalysis 18:1007–1013

    Article  Google Scholar 

  5. Pan J, Yang QW (2007) Antibody-functionalized magnetic nanoparticles for the detection of carcinoembryonic antigen using a flow-injection electrochemical device. Anal Bioanal Chem 388:279–286

    Article  CAS  Google Scholar 

  6. Walter K, Norbert N, Jochen S, Rudolf P, Herbert H (1988) Is there any clinical relevance of serial determinations of serum carcinoembryonic antigen in small cell lung cancer patients. Cancer 62:1348–1354

    Article  Google Scholar 

  7. Pergters J, Schmide-Gayk H, Peters B, Armbruster FP, Quentmeler A, Mathlas D (1989) lmmunoradiometric assay of carcinoembryonic antigen with use of avidin-biotin labeling. Clin Chem 35:573–576

    Article  Google Scholar 

  8. Lin JH, Yan F, Ju HX (2004) Noncompetitive enzyme immunoassay for carcinoembryonic antigen by flow injection chemiluminescence. Clin Chim Acta 341:109–115

    Article  CAS  Google Scholar 

  9. Yuan JL, Wang GL, Majima K, Matsumoto K (2001) Synthesis of a terbium fluorescent chelate and its application to time-resolved fluoroimmunoassay. Anal Chem 73:1869–1876

    Article  CAS  Google Scholar 

  10. Dungchai W, Siangproh W, Lin JM, Chailapakul O, Lin S, Ying XT (2007) Development of a sensitive micro-magnetic chemiluminescence enzyme immunoassay for the determination of carcinoembryonic antigen. Anal Bioanal Chem 387:1965–1971

    Article  CAS  Google Scholar 

  11. Ye F, Shi M, Huang Y, Zhao S (2010) Noncompetitive immunoassay for carcinoembryonic antigen in human serum by microchip electrophoresis for cancer diagnosis. Clin Chim Acta 411:1058–1062

    Article  CAS  Google Scholar 

  12. Hou L, Tang Y, Xu M, Gao Z, Tang D (2014) Tyramine-based enzymatic conjugate repeats for ultrasensitive immunoassay accompanying tyramine signal amplification with enzymatic biocatalytic precipitation. Anal Chem 86:8352–8358

    Article  CAS  Google Scholar 

  13. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  Google Scholar 

  14. Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CJ, Tan W (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci U S A 103:11838–11843

    Article  CAS  Google Scholar 

  15. Xue L, Zhou X, Xing D (2012) Sensitive and homogeneous protein detection based on target-triggered aptamer hairpin switch and nicking enzyme assisted fluorescence signal amplification. Anal Chem 84:3507–3513

    Article  CAS  Google Scholar 

  16. Shang F, Guihen E, Glennon JD (2012) Recent advances in miniaturization-the role of microchip electrophoresis in clinical analysis. Electrophoresis 33:105–116

    Article  CAS  Google Scholar 

  17. Nge PN, Rogers CI, Woolley AT (2013) Advances in microfluidic materials, functions, integration, and applications. Chem Rev 113:2550–2583

    Article  CAS  Google Scholar 

  18. Yang T, Vdovenko M, Jin X, Sakharov IY, Zhao S (2014) Highly sensitive microfluidic competitive enzyme immunoassay based on chemiluminescence resonance energy transfer for the detection of neuron-specific enolase. Electrophoresis 35:2022–2028

    Article  CAS  Google Scholar 

  19. Fredlake CP, Hert DG, Root BE, Barron AE (2008) Polymer systems designed specifically for DNA sequencing by microchip electrophoresis: a comparison with commercially available materials. Electrophoresis 29:4652–4662

    Article  CAS  Google Scholar 

  20. Slagter-Jäger JG, Nicolette CA, Tcherepanova IY (2012) Evaluation of a microfluidics-based platform and slab electrophoresis for determination of size, integrity and quantification of in vitro transcribed RNA used as a component in therapeutic drug manufacturing. J Pharm Biomed Anal 70:657–663

    Article  Google Scholar 

  21. Jin S, Anderson GJ, Kennedy RT (2013) Western blotting using microchip electrophoresis interfaced to a protein capture membrane. Anal Chem 85:6073–6079

    Article  CAS  Google Scholar 

  22. Zhao S, Huang Y, Shi M, Liu YM (2009) Quantification of biogenic amines by microchip electrophoresis with chemiluminescence detection. J Chromatogr A 1216:5155–5159

    Article  CAS  Google Scholar 

  23. Bi S, Yan Y, Yang X, Zhang S (2009) Gold nanolabels for new enhanced chemiluminescence immunoassay of alpha-fetoprotein based on magnetic beads. Chem Eur J 15:4704–4709

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhao, S. (2019). Aptamer-Based Microchip Electrophoresis Assays for Amplification Detection of Carcinoembryonic Antigen. In: Phillips, T.M. (eds) Clinical Applications of Capillary Electrophoresis. Methods in Molecular Biology, vol 1972. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9213-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9213-3_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9212-6

  • Online ISBN: 978-1-4939-9213-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics