Skip to main content

Inconsistencies and Limitations of Current MicroRNA Target Identification Methods

  • Protocol
  • First Online:
Book cover MicroRNA Target Identification

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1970))

Abstract

MicroRNAs and their Argonaute protein partners constitute the RISC complex, which can repress specific target mRNAs. The identification of microRNA targets is of central importance, and various experimental and computational methods have been developed over the last 15 years. Most experimental methods are based on the assumption that mRNAs which interact physically with the RISC complex constitute regulatory targets and, similarly, some computational methods only aim at predicting physical interactors for RISC. Besides specific limitations, which we discuss for each method, the mere concept of assuming a functional role for every detected molecular event is likely to identify many deceptive interactions (i.e., interactions that really exist at the molecular scale, but without controlling any biological function at the macroscopic scale).

In order to select biologically important interactions, some computational tools interrogate the phylogenetic conservation of microRNA/mRNA interactions, thus theoretically selecting only biologically relevant targets. Yet even comparative genomics can yield false positives.

Conceptual and technical limitations for all these techniques tend to be overlooked by the scientific community. This review sums them up, emphasizing on the implications of these issues on our understanding of microRNA biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, et al (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441

    Article  CAS  PubMed  Google Scholar 

  2. Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197

    Article  CAS  PubMed  Google Scholar 

  3. Hutvágner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297:2056–2060

    Article  PubMed  CAS  Google Scholar 

  4. Yekta S, Shih Ih, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594–596

    Article  CAS  PubMed  Google Scholar 

  5. Davis E, Caiment F, Tordoir X, Cavaillé J, Ferguson-Smith A, Cockett N, et al (2005) RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus. Curr Biol 15:743–749

    Article  CAS  PubMed  Google Scholar 

  6. Karginov FV, Cheloufi S, Chong MM, Stark A, Smith AD, Hannon GJ (2010) Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, Drosha, and additional nucleases. Mol Cell 38:781–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shin C, Nam JW, Farh KK, Chiang HR, Shkumatava A, Bartel DP (2010) Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell 38:789–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455:64–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hendrickson DG, Hogan DJ, McCullough HL, Myers JW, Herschlag D, Ferrell JE, et al (2009) Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol 7:e1000238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eichhorn SW, Guo H, McGeary SE, Rodriguez-Mias RA, Shin C, Baek D, et al (2014) mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol Cell 56:104–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ambros V (1989) A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. Cell 57:49–57

    Article  CAS  PubMed  Google Scholar 

  13. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  14. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862

    Article  CAS  PubMed  Google Scholar 

  15. Moss EG, Lee RC, Ambros V (1997) The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell 88:637–646

    Article  CAS  PubMed  Google Scholar 

  16. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    Article  CAS  PubMed  Google Scholar 

  17. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (2003) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113:25–36

    Article  CAS  PubMed  Google Scholar 

  18. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    Article  CAS  PubMed  Google Scholar 

  19. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2003) MicroRNA targets in Drosophila. Genome Biol 5:R1

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lin SY, Johnson SM, Abraham M, Vella MC, Pasquinelli A, Gamberi C, et al (2003) The C. elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. Dev Cell 4:639–650

    Article  CAS  PubMed  Google Scholar 

  21. Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460:479–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zisoulis DG, Lovci MT, Wilbert ML, Hutt KR, Liang TY, Pasquinelli AE, et al (2010) Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans. Nat Struct Mol Biol 17:173–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gu S, Jin L, Zhang F, Sarnow P, Kay MA (2009) Biological basis for restriction of microRNA targets to the 3 untranslated region in mammalian mRNAs. Nat Struct Mol Biol 16:144–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lai EC (2002) MicroRNAs are complementary to 3 UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30:363–364

    Article  CAS  PubMed  Google Scholar 

  27. Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, et al (2003) The microRNAs of Caenorhabditis elegans. Genes Dev 17:991–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stark A, Brennecke J, Russell RB, Cohen SM (2003) Identification of Drosophila microRNA targets. PLoS Biol 1:E60

    Article  PubMed  PubMed Central  Google Scholar 

  29. Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500

    Article  CAS  PubMed  Google Scholar 

  30. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kedde M, Strasser MJ, Boldajipour B, Oude JA Vrielink, Slanchev K, le Sage C, et al (2007) RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131:1273–1286

    Article  CAS  PubMed  Google Scholar 

  32. Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4. https://doi.org/10.7554/eLife.05005

  33. Wightman B, Burglin TR, Gatto J, Arasu P, Ruvkun G (1991) Negative regulatory sequences in the lin-14 3′-untranslated region are necessary to generate a temporal switch during Caenorhabditis elegans development. Genes Dev 5:1813–1824

    Article  CAS  PubMed  Google Scholar 

  34. Arasu P, Wightman B, Ruvkun G (1991) Temporal regulation of lin-14 by the antagonistic action of two other heterochronic genes, lin-4 and lin-28. Genes Dev 5:1825–1833

    Article  CAS  PubMed  Google Scholar 

  35. Ecsedi M, Rausch M, Großhans H (2015) The let-7 microRNA directs vulval development through a single target. Dev Cell 32:335–344

    Article  CAS  PubMed  Google Scholar 

  36. Khan AA, Betel D, Miller ML, Sander C, Leslie CS, Marks DS (2009) Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nat Biotechnol 27:549–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sioud M (2005) Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol 348:1079–1090

    Article  CAS  PubMed  Google Scholar 

  38. Denzler R, Agarwal V, Stefano J, Bartel DP, Stoffel M (2014) Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol Cell 54:766–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bosson A, Zamudio J, Sharp P (2014) Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol Cell 56:347–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pinzón N, Li B, Martinez L, Sergeeva A, Presumey J, Apparailly F, et al (2017) microRNA target prediction programs predict many false positives. Genome Res 27:234–245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Hutvágner G, Simard MJ, Mello CC, Zamore PD (2004) Sequence-specific inhibition of small RNA function. PLoS Biol 2:E98

    Article  PubMed  PubMed Central  Google Scholar 

  42. Meister G, Landthaler M, Dorsett Y, Tuschl T (2004) Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA 10:544–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, et al (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689

    Article  PubMed  CAS  Google Scholar 

  44. Sarvestani ST, Stunden HJ, Behlke MA, Forster SC, McCoy CE, Tate MD, et al (2015) Sequence-dependent off-target inhibition of TLR7/8 sensing by synthetic microRNA inhibitors. Nucleic Acids Res 43:1177–1188

    Article  CAS  PubMed  Google Scholar 

  45. Lytle JR, Yario TA, Steitz JA (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5 UTR as in the 3 UTR. Proc Natl Acad Sci USA 104:9667–9672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kong YW, Cannell IG, de Moor CH, Hill K, Garside PG, Hamilton TL, et al (2008) The mechanism of micro-RNA-mediated translation repression is determined by the promoter of the target gene. Proc Natl Acad Sci USA 105:8866–8871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cottrell KA, Szczesny P, Djuranovic S (2017) Translation efficiency is a determinant of the magnitude of miRNA-mediated repression. Sci Rep 7:14884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Thorne N, Inglese J, Auld DS (2010) Illuminating insights into firefly luciferase and other bioluminescent reporters used in chemical biology. Chem Biol 17:646–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Johnston RJ, Hobert O (2003) A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426:845–849

    Article  CAS  PubMed  Google Scholar 

  50. Milán M, Campuzano S, García-Bellido A (1997) Developmental parameters of cell death in the wing disc of Drosophila. Proc Natl Acad Sci USA 94:5691–5696

    Article  PubMed  PubMed Central  Google Scholar 

  51. Nakahara K, Kim K, Sciulli C, Dowd SR, Minden JS, Carthew RW (2005) Targets of microRNA regulation in the Drosophila oocyte proteome. Proc Natl Acad Sci USA 102:12023–12028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63

    Article  CAS  PubMed  Google Scholar 

  53. Ule J, Jensen KB, Ruggiu M, Mele A, Ule A, Darnell RB (2003) CLIP identifies Nova-regulated RNA networks in the brain. Science 302:1212–1215

    Article  CAS  PubMed  Google Scholar 

  54. Ule J, Jensen K, Mele A, Darnell RB (2005) CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods 37:376–386

    Article  CAS  PubMed  Google Scholar 

  55. Greenberg JR (1979) Ultraviolet light-induced crosslinking of mRNA to proteins. Nucleic Acids Res 6:715–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, Chi SW, et al (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456:464–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schirle NT, Sheu-Gruttadauria J, MacRae IJ (2014) Structural basis for microRNA targeting. Science 346:608–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sugimoto Y, König J, Hussain S, Zupan B, Curk T, Frye M, et al (2012) Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein-RNA interactions. Genome Biol 13:R67

    Article  PubMed  PubMed Central  Google Scholar 

  59. Darnell RB (2010) HITS-CLIP: panoramic views of protein-RNA regulation in living cells. Wiley Interdiscip Rev RNA 1:266–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Favre A, Bezerra R, Hajnsdorf E, Lemaigre Dubreuil Y, Expert-Bezancon A (1986) Substitution of uridine in vivo by the intrinsic photoactivable probe 4-thiouridine in Escherichia coli RNA. Its use for E. coli ribosome structural analysis. Eur J Biochem 160:441–449

    Article  CAS  PubMed  Google Scholar 

  61. Favre A, Moreno G, Blondel MO, Kliber J, Vinzens F, Salet C (1986) 4-Thiouridine photosensitized RNA-protein crosslinking in mammalian cells. Biochem Biophys Res Commun 141:847–854

    Article  CAS  PubMed  Google Scholar 

  62. Zhang C, Darnell RB (2011) Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. Nat Biotechnol 29:607–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ascano M, Hafner M, Cekan P, Gerstberger S, Tuschl T (2012) Identification of RNA-protein interaction networks using PAR-CLIP. Wiley Interdiscip Rev RNA 3:159–177

    Article  CAS  PubMed  Google Scholar 

  64. Lebedeva S, Jens M, Theil K, Schwanhäusser B, Selbach M, Landthaler M, et al (2011) Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol Cell 43:340–352

    Article  CAS  PubMed  Google Scholar 

  65. Urlaub H, Hartmuth K, Lührmann R (2002) A two-tracked approach to analyze RNA-protein crosslinking sites in native, nonlabeled small nuclear ribonucleoprotein particles. Methods 26:170–181

    Article  CAS  PubMed  Google Scholar 

  66. König J, Zarnack K, Rot G, Curk T, Kayikci M, Zupan B, et al (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol 17:909–915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Broughton JP, Pasquinelli AE (2013) Identifying Argonaute binding sites in Caenorhabditis elegans using iCLIP. Methods 63:119–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Broughton JP, Lovci MT, Huang JL, Yeo GW, Pasquinelli AE (2016) Pairing beyond the seed supports MicroRNA targeting specificity. Mol Cell 64:320–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kudla G, Granneman S, Hahn D, Beggs JD, Tollervey D (2011) Cross-linking, ligation, and sequencing of hybrids reveals RNA-RNA interactions in yeast. Proc Natl Acad Sci USA 108:10010–10015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153:654–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Helwak A, Tollervey D (2014) Mapping the miRNA interactome by cross-linking ligation and sequencing of hybrids (CLASH). Nat Protoc 9:711–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Grosswendt S, Filipchyk A, Manzano M, Klironomos F, Schilling M, Herzog M, et al (2014) Unambiguous identification of miRNA: target site interactions by different types of ligation reactions. Mol Cell 54:1042–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Moore MJ, Scheel TK, Luna JM, Park CY, Fak JJ, Nishiuchi E, et al (2015) miRNA-target chimeras reveal miRNA 3-end pairing as a major determinant of Argonaute target specificity. Nat Commun 6:8864

    Google Scholar 

  74. Guo YE, Oei T, Steitz JA (2015) Herpesvirus saimiri MicroRNAs preferentially target host cell cycle regulators. J Virol 89:10901–10911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Stefani G, Chen X, Zhao H, Slack FJ (2015) A novel mechanism of LIN-28 regulation of let-7 microRNA expression revealed by in vivo HITS-CLIP in C. elegans. RNA 21:985–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Eckenfelder A, Ségéral E, Pinzón N, Ulveling D, Amadori C, Charpentier M, et al (2017) Argonaute proteins regulate HIV-1 multiply spliced RNA and viral production in a Dicer independent manner. Nucleic Acids Res 45:4158–4173

    CAS  PubMed  Google Scholar 

  77. Loeb GB, Khan AA, Canner D, Hiatt JB, Shendure J, Darnell RB, et al (2012) Transcriptome-wide miR-155 binding map reveals widespread noncanonical microRNA targeting. Mol Cell 48:760–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Luna JM, Barajas JM, Teng KY, Sun HL, Moore MJ, Rice CM, et al (2017) Argonaute CLIP defines a deregulated miR-122-bound transcriptome that correlates with patient survival in human liver cancer. Mol Cell 67:400–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Okamura K, Ishizuka A, Siomi H, Siomi MC (2004) Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev 18:1655–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA 102:11928–11933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Irvine DV, Zaratiegui M, Tolia NH, Goto DB, Chitwood DH, Vaughn MW, et al (2006) Argonaute slicing is required for heterochromatic silencing and spreading. Science 313:1134–1137

    Article  CAS  PubMed  Google Scholar 

  82. Wee LM, Flores-Jasso CF, Salomon WE, Zamore PD (2012) Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties. Cell 151:1055–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Salomon WE, Jolly SM, Moore MJ, Zamore PD, Serebrov V (2015) Single-molecule imaging reveals that Argonaute reshapes the binding properties of its nucleic acid guides. Cell 162:84–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056

    Article  CAS  PubMed  Google Scholar 

  85. Martinez J, Tuschl T (2004) RISC is a 5 phosphomonoester-producing RNA endonuclease. Genes Dev 18:975–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18:758–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Peach SE, York K, Hesselberth JR (2015) Global analysis of RNA cleavage by 5-hydroxyl RNA sequencing. Nucleic Acids Res 43:e108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Seitz H, Youngson N, Lin SP, Dalbert S, Paulsen M, Bachellerie JP, et al (2003) Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene. Nat Genet 34:261–262

    Article  CAS  PubMed  Google Scholar 

  89. Bracken CP, Szubert JM, Mercer TR, Dinger ME, Thomson DW, Mattick JS, et al (2011) Global analysis of the mammalian RNA degradome reveals widespread miRNA-dependent and miRNA-independent endonucleolytic cleavage. Nucleic Acids Res 39:5658–5668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Addo-Quaye C, Snyder JA, Park YB, Li YF, Sunkar R, Axtell MJ (2009) Sliced microRNA targets and precise loop-first processing of MIR319 hairpins revealed by analysis of the Physcomitrella patens degradome. RNA 15:2112–2121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Moran Y, Fredman D, Praher D, Li XZ, Wee LM, Rentzsch F, et al (2014) Cnidarian microRNAs frequently regulate targets by cleavage. Genome Res 24:651–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Becam I, Rafel N, Hong X, Cohen SM, Milán M (2011) Notch-mediated repression of bantam miRNA contributes to boundary formation in the Drosophila wing. Development 138:3781–3789

    Article  CAS  PubMed  Google Scholar 

  93. Bassett AR, Azzam G, Wheatley L, Tibbit C, Rajakumar T, McGowan S, et al (2014) Understanding functional miRNA-target interactions in vivo by site-specific genome engineering. Nat Commun 5:4640

    Article  CAS  PubMed  Google Scholar 

  94. Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, Mourelatos Z, et al (2004) A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18:1165–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, et al (2006) A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217

    Article  CAS  PubMed  Google Scholar 

  96. Friedman RC, Burge CB (2014) MicroRNA target finding by comparative genomics. Methods Mol Biol 1097:457–476

    Article  CAS  PubMed  Google Scholar 

  97. Nam JW, Rissland OS, Koppstein D, Abreu-Goodger C, Jan CH, Agarwal V, et al (2014) Global analyses of the effect of different cellular contexts on microRNA targeting. Mol Cell 53:1031–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Speir ML, Zweig AS, Rosenbloom KR, Raney BJ, Paten B, Nejad P, et al (2016) The UCSC Genome Browser database: 2016 update. Nucleic Acids Res 44:D717–D725

    Article  CAS  PubMed  Google Scholar 

  99. Thadani R, Tammi MT (2006) MicroTar: predicting microRNA targets from RNA duplexes. BMC Bioinformatics 7(Suppl 5):S20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284

    Article  CAS  PubMed  Google Scholar 

  101. Elefant N, Altuvia Y, Margalit H (2011) A wide repertoire of miRNA binding sites: prediction and functional implications. Bioinformatics 27:3093–3101

    Article  CAS  PubMed  Google Scholar 

  102. Gumienny R, Zavolan M (2015) Accurate transcriptome-wide prediction of microRNA targets and small interfering RNA off-targets with MIRZA-G. Nucleic Acids Res 43:1380–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Betel D, Koppal A, Agius P, Sander C, Leslie C (2010) Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 11:R90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73

    Article  CAS  PubMed  Google Scholar 

  105. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Seitz H (2017) Issues in current microRNA target identification methods. RNA Biol 14:831–834

    Article  PubMed  PubMed Central  Google Scholar 

  107. Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36:D149–D153

    Article  CAS  PubMed  Google Scholar 

  108. Paraskevopoulou MD, Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis T, Reczko M, et al (2013) DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res 41:W169–W173

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Isabelle Busseau and Dr. Séverine Chambeyron for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Seitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mockly, S., Seitz, H. (2019). Inconsistencies and Limitations of Current MicroRNA Target Identification Methods. In: Laganà, A. (eds) MicroRNA Target Identification. Methods in Molecular Biology, vol 1970. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9207-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9207-2_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9206-5

  • Online ISBN: 978-1-4939-9207-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics