Skip to main content

In Vivo ChIP-Seq of Nuclear Receptors: A Rough Guide to Transform Frozen Tissues into High-Confidence Genome-Wide Binding Profiles

  • Protocol
  • First Online:
Nuclear Receptors

Abstract

Chromatin immunoprecipitation coupled to next generation sequencing (ChIP-seq) is a powerful tool to map context-dependent genome-wide binding of nuclear hormone receptors and their coregulators. This information can provide important mechanistic insight into where, when and how DNA–protein interactions are linked to target gene regulation. Here we describe a simple, yet reliable ChIP-seq method, including nuclear isolation from frozen tissue samples, cross-linking DNA–protein complexes, chromatin shearing, immunoprecipitation, and purification of ChIP DNA. We also include a standard ChIP-seq data analysis pipeline to elaborate and analyze raw single-end or paired-end sequencing data, including quality control steps, peak calling, annotation, and motif enrichment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barish GD, Tangirala RK (2013) Chromatin immunoprecipitation. Methods Mol Biol 1027:327–342

    Article  CAS  Google Scholar 

  2. Nelson JD, Denisenko O, Bomsztyk K (2006) Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc 1(1):179–185

    Article  CAS  Google Scholar 

  3. Yi H, Li Z, Li T, Zhao J (2015) Bayexer: an accurate and fast Bayesian demultiplexer for Illumina sequences. Bioinformatics 31(24):4000–4002

    CAS  PubMed  Google Scholar 

  4. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  Google Scholar 

  5. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26(5):589–595

    Article  Google Scholar 

  6. Mudge JM, Harrow J (2015) Creating reference gene annotation for the mouse C57BL6/J genome assembly. Mamm Genome 26(9–10):366–378

    Article  CAS  Google Scholar 

  7. Harrow J et al (2012) GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 22(9):1760–1774

    Article  CAS  Google Scholar 

  8. Li H et al (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25(16):2078–2079

    Article  Google Scholar 

  9. Barnett DW, Garrison EK, Quinlan AR, Stromberg MP, Marth GT (2011) BamTools: a C++ API and toolkit for analyzing and managing BAM files. Bioinformatics 27(12):1691–1692

    Article  CAS  Google Scholar 

  10. Zhang Y et al (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9(9):R137

    Article  Google Scholar 

  11. Heinz S et al (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38(4):576–589

    Article  CAS  Google Scholar 

  12. Ramirez F, Dundar F, Diehl S, Gruning BA, Manke T (2014) deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res 42(Web Server issue):W187–W191

    Article  CAS  Google Scholar 

  13. Frith MC et al (2004) Detection of functional DNA motifs via statistical over-representation. Nucleic Acids Res 32(4):1372–1381

    Article  CAS  Google Scholar 

  14. Khan A et al (2018) JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res 46(D1):D260–D266

    Article  CAS  Google Scholar 

  15. Landt SG et al (2012) ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res 22(9):1813–1831

    Article  CAS  Google Scholar 

  16. Li Q, Brown JB, Huang H, Bickel PJ (2011) Measuring reproducibility of high-throughput experiments. Ann Appl Stat 5(3):1752–1779

    Article  Google Scholar 

  17. Diaz A, Park K, Lim DA, Song JS (2012) Normalization, bias correction, and peak calling for ChIP-seq. Stat Appl Genet Mol Biol 11(3). https://doi.org/10.1515/1544-6115.1750

  18. Quinlan AR (2014) BEDTools: the Swiss-Army tool for genome feature analysis. Curr Protoc Bioinformatics 47:11.12.1–11.1234

    Article  Google Scholar 

  19. Freese NH, Norris DC, Loraine AE (2016) Integrated genome browser: visual analytics platform for genomics. Bioinformatics 32(14):2089–2095

    Article  CAS  Google Scholar 

  20. Karolchik D, Hinrichs AS, Kent WJ (2007) The UCSC Genome Browser. Curr Protoc Bioinformatics Chapter 1:Unit 1.4

    PubMed  Google Scholar 

  21. Wang S et al (2013) Target analysis by integration of transcriptome and ChIP-seq data with BETA. Nat Protoc 8(12):2502–2515

    Article  CAS  Google Scholar 

  22. Maaskola J, Rajewsky N (2014) Binding site discovery from nucleic acid sequences by discriminative learning of hidden Markov models. Nucleic Acids Res 42(21):12995–13011

    Article  CAS  Google Scholar 

  23. Hatem A, Bozdağ D, Toland AE, Çatalyürek ÜV (2013) Benchmarking short sequence mapping tools. BMC Bioinformatics 14:184

    Article  Google Scholar 

  24. Canzar S, Salzberg SL (2017) Short read mapping: an algorithmic tour. Proc IEEE Inst Electr Electron Eng 105(3):436–458

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Henriette Uhlenhaut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mir, A.A. et al. (2019). In Vivo ChIP-Seq of Nuclear Receptors: A Rough Guide to Transform Frozen Tissues into High-Confidence Genome-Wide Binding Profiles. In: Badr, M. (eds) Nuclear Receptors. Methods in Molecular Biology, vol 1966. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9195-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9195-2_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9194-5

  • Online ISBN: 978-1-4939-9195-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics