Skip to main content

Reconstitution of the Steroid Receptor Heterocomplex

  • Protocol
  • First Online:
Nuclear Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1966))

Abstract

Steroid receptors are members of a subfamily of the nuclear receptor superfamily. They play a dual role of steroid hormone receptors and transcription factors. Actually, these receptors are steroid-activated transcription factors. Classical soluble receptors exist as oligomeric complexes with the Hsp90-based chaperone machinery. The steroid receptor field was born and developed along with the molecular chaperone field. Chaperones are not exclusive partners associated to these receptors, but also comprise a large variety of heterocomplexes with other proteins involved in signal transduction. By using the glucocorticoid receptor (GR) as a standard model for most Hsp90-client proteins, in this chapter we describe the functional GR·Hsp90 heterocomplex assembly system from reticulocyte lysate or purified proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pratt WB, Galigniana MD, Morishima Y, Murphy PJ (2004) Role of molecular chaperones in steroid receptor action. Essays Biochem 40:41–58

    Article  CAS  Google Scholar 

  2. Riggs DL, Cox MB, Cheung-Flynn J, Prapapanich V, Carrigan PE, Smith DF (2004) Functional specificity of co-chaperone interactions with Hsp90 client proteins. Crit Rev Biochem Mol Biol 39(5–6):279–295. https://doi.org/10.1080/10409230490892513

    Article  CAS  PubMed  Google Scholar 

  3. Pratt WB, Dittmar KD (1998) Studies with purified chaperones advance the understanding of the mechanism of glucocorticoid receptor-hsp90 heterocomplex assembly. Trends Endocrinol Metab 9(6):244–252

    Article  CAS  Google Scholar 

  4. Murphy PJ, Kanelakis KC, Galigniana MD, Morishima Y, Pratt WB (2001) Stoichiometry, abundance, and functional significance of the hsp90/hsp70-based multiprotein chaperone machinery in reticulocyte lysate. J Biol Chem 276(32):30092–30098. https://doi.org/10.1074/jbc.M103773200

    Article  CAS  PubMed  Google Scholar 

  5. Pratt WB, Galigniana MD, Harrell JM, DeFranco DB (2004) Role of hsp90 and the hsp90-binding immunophilins in signalling protein movement. Cell Signal 16(8):857–872. https://doi.org/10.1016/j.cellsig.2004.02.004

    Article  CAS  PubMed  Google Scholar 

  6. Murphy PJ, Morishima Y, Chen H, Galigniana MD, Mansfield JF, Simons SS Jr, Pratt WB (2003) Visualization and mechanism of assembly of a glucocorticoid receptor.Hsp70 complex that is primed for subsequent Hsp90-dependent opening of the steroid binding cleft. J Biol Chem 278(37):34764–34773

    Article  CAS  Google Scholar 

  7. Erlejman AG, Lagadari M, Harris DC, Cox MB, Galigniana MD (2014) Molecular chaperone activity and biological regulatory actions of the TPR-domain immunophilins FKBP51 and FKBP52. Curr Protein Pept Sci 15(3):205–215

    Article  CAS  Google Scholar 

  8. Mazaira GI, Camisay MF, De Leo S, Erlejman AG, Galigniana MD (2016) Biological relevance of Hsp90-binding immunophilins in cancer development and treatment. Int J Cancer 138(4):797–808. https://doi.org/10.1002/ijc.29509

    Article  CAS  PubMed  Google Scholar 

  9. Li J, Soroka J, Buchner J (2012) The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochim Biophys Acta 1823(3):624–635. https://doi.org/10.1016/j.bbamcr.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  10. Grenert JP, Sullivan WP, Fadden P, Haystead TA, Clark J, Mimnaugh E, Krutzsch H, Ochel HJ, Schulte TW, Sausville E, Neckers LM, Toft DO (1997) The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J Biol Chem 272(38):23843–23850

    Article  CAS  Google Scholar 

  11. Quinta HR, Galigniana NM, Erlejman AG, Lagadari M, Piwien-Pilipuk G, Galigniana MD (2011) Management of cytoskeleton architecture by molecular chaperones and immunophilins. Cell Signal 23(12):1907–1920. https://doi.org/10.1016/j.cellsig.2011.07.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lagadari M, De Leo SA, Camisay MF, Galigniana MD, Erlejman AG (2015) Regulation of NF-kappaB signalling cascade by immunophilins. Curr Mol Pharmacol 9(2):99–108

    Article  Google Scholar 

  13. Erlejman AG, De Leo SA, Mazaira GI, Molinari AM, Camisay MF, Fontana V, Cox MB, Piwien-Pilipuk G, Galigniana MD (2014) NF-kappaB transcriptional activity is modulated by FK506-binding proteins FKBP51 and FKBP52: a role for peptidyl-prolyl isomerase activity. J Biol Chem 289(38):26263–26276. https://doi.org/10.1074/jbc.M114.582882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Felts SJ, Toft DO (2003) p23, a simple protein with complex activities. Cell Stress Chaperones 8(2):108–113

    Article  CAS  Google Scholar 

  15. Galigniana MD, Piwien Pilipuk G, Kanelakis KC, Burton G, Lantos CP (2004) Molecular mechanism of activation and nuclear translocation of the mineralocorticoid receptor upon binding of pregnanesteroids. Mol Cell Endocrinol 217(1–2):167–179. https://doi.org/10.1016/j.mce.2003.10.041

    Article  CAS  PubMed  Google Scholar 

  16. Galigniana MD, Echeverria PC, Erlejman AG, Piwien-Pilipuk G (2010) Role of molecular chaperones and TPR-domain proteins in the cytoplasmic transport of steroid receptors and their passage through the nuclear pore. Nucleus 1(4):299–308. https://doi.org/10.4161/nucl.1.4.11743

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mazaira GI, Lagadari M, Erlejman AG, Galigniana MD (2014) The emerging role of TPR-domain immunophilins in the mechanism of action of steroid receptors. Nucl Receptor Res 1:1–17 . ID 101094. https://doi.org/10.11131/2014/101094

    Article  Google Scholar 

  18. Pratt WB, Toft DO (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 18(3):306–360

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research work in our laboratory is supported by grants from the University of Buenos Aires (UBACYT Program) and Agencia Nacional de Promoción Científica y Tecnológica (PICT 2014-3433 and PICT 2016-0545 to M.D.G., and PICT 2016-2607 to G.I.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario D. Galigniana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mazaira, G.I., Galigniana, M.D. (2019). Reconstitution of the Steroid Receptor Heterocomplex. In: Badr, M. (eds) Nuclear Receptors. Methods in Molecular Biology, vol 1966. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9195-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9195-2_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9194-5

  • Online ISBN: 978-1-4939-9195-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics