Skip to main content

The Xenopus tropicalis Model for Studies of Developmental and Reproductive Toxicity

  • Protocol
  • First Online:
Developmental Toxicology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1965))

Abstract

The reproductive cycle encompasses processes such as sex organ differentiation and development in the early life stages and maturation of the gametes in the adult organism. During the early life stages, critical developmental programming of the endocrine and reproductive systems occurs, and exposure to chemicals during these critical developmental windows can result in impaired reproductive function later in life. It is therefore important to evaluate long-term consequences of early life stage exposure to endocrine-disrupting chemicals. The African clawed frog Xenopus tropicalis has several characteristics that facilitate studies of developmental and reproductive toxicity. Here I present a X. tropicalis life cycle test protocol including study design, exposure regimes, and endpoints for chemical disruption of sex differentiation, gonadal and Müllerian duct development, the thyroxin-regulated metamorphosis, estrogen synthesis (activity of the CYP19 aromatase enzyme), spermatogenesis, oogenesis, puberty and fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berg C, Gyllenhammar I, Kvarnryd M (2009) Xenopus tropicalis as a test system for developmental and reproductive toxicity. J Toxicol Environ Health 72:219–225

    Article  CAS  Google Scholar 

  2. Kloas W, Lutz I (2006) Amphibians as model to study endocrine disrupters. J Chromatogr A 1130:16–27

    Article  CAS  Google Scholar 

  3. Berg C, Halldin K, Fridolfsson AK, Brandt I, Brunström B (1999) The avian egg as a test system for endocrine disrupters: effects of diethylstilbestrol and ethynylestradiol on sex organ development. Sci Total Environ 233:57–66

    Article  CAS  Google Scholar 

  4. Pettersson I, Berg C (2007) Environmentally relevant concentrations of ethynylestradiol cause female-biased sex ratios in Xenopus tropicalis and Rana temporaria. Environ Toxicol Chem 26:1005–1009

    Article  CAS  Google Scholar 

  5. Crain DA, Janssen SJ, Edwards TM, Heindel J et al (2008) Female reproductive disorders: the roles of endocrine-disrupting compounds and developmental timing. Fertil Steril 90:911–940

    Article  CAS  Google Scholar 

  6. Gyllenhammar I, Holm L, Eklund R, Berg C (2009) Reproductive toxicity in Xenopus tropicalis after developmental exposure to environmental concentrations of ethynylestradiol. Aquat Toxicol 91:171–178

    Article  CAS  Google Scholar 

  7. Guillette LJ Jr (2000) Contaminant-induced endocrine disruption in wildlife. Growth Hormon IGF Res 10:S45–S50

    Article  Google Scholar 

  8. Hirsch N, Zimmerman LB et al (2002) Xenopus, the next generation: X. tropicalis genetics and genomics. Dev Dyn 225:422–433

    Article  CAS  Google Scholar 

  9. Tan MH, Au KF, Yablonovitch AL, Wills AE, Chuang J et al (2013) RNA sequencing reveals a diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. Genome Res 23(1):201–216

    Article  CAS  Google Scholar 

  10. Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J et al (2010) The genome of the western clawed frog Xenopus tropicalis. Science 328:633–636

    Article  CAS  Google Scholar 

  11. Nieuwkoop PD, Faber J (1956) Normal table of Xenopus Laevis (Daudin). North Holland Publishing, Amsterdam

    Google Scholar 

  12. Jansson E, Mattsson A, Goldstone J, Berg C (2016) Sex-dependent expression of anti-Müllerian hormone (amh) and amh receptor 2 during sex organ differentiation and characterization of Müllerian duct development in Xenopus tropicalis. Gen Comp Endocrinol 229:132–144

    Article  CAS  Google Scholar 

  13. Pettersson I, Arukwe A, Lundstedt-Enkel K, Mortensen AS, Berg C (2006) Persistent sex-reversal and oviducal agenesis in adult Xenopus (Silurana) tropicalis frogs following larval exposure to the environmental pollutant ethynylestradiol. Aquat Toxicol 79:356–365

    Article  CAS  Google Scholar 

  14. Gyllenhammar I, Eriksson H, Söderqvist A, Lindberg R, Fick J, Berg C (2009) Clotrimazole exposure modulates aromatase activity in gonads and brain during gonadal differentiation in Xenopus tropicalis frogs. Aquat Toxicol 91:102–109

    Article  CAS  Google Scholar 

  15. Säfholm M, Norder A, Fick J, Berg C (2012) Disrupted oogenesis in the frog Xenopus tropicalis after exposure to environmental progestin concentrations. Biol Reprod 86:1–7

    Article  Google Scholar 

  16. Säfholm M, Ribbenstedt A, Fick J, Berg C (2014) Risks of hormonally active pharmaceuticals to amphibians: a growing concern regarding progestogens. Philos Trans R Soc Lond Ser B Biol Sci 369:20130577

    Article  Google Scholar 

  17. Säfholm M, Jansson E, Fick J, Berg C (2016) Molecular and histological endpoints for developmental reproductive toxicity in Xenopus tropicalis: levonorgestrel perturbs anti-Müllerian hormone and progesterone receptor expression. Comp Biochem Physiol C Toxicol Pharmacol 181–182:9–18

    Article  Google Scholar 

  18. Berg C, Backström T, Winberg S, Lindberg R, Brandt I (2013) Developmental exposure to fluoxetine modulates the serotonin system in hypothalamus. PLoS One 8(1):e55053

    Article  CAS  Google Scholar 

  19. Säfholm M, Jansson E, Fick J, Berg C (2015) Mixture effects of levonorgestrel and ethinylestradiol: estrogenic biomarkers and hormone receptor mRNA expression during sexual programming. Aquat Toxicol 161:146–153

    Article  Google Scholar 

  20. El Jamil A, Magre S, Mazabraud A, Penrad-Mobayed M (2008) Early aspects of gonadal sex differentiation in Xenopus tropicalis with reference to an antero-posterior gradient. J Exp Zool 309A:127–137

    Article  Google Scholar 

  21. Piprek RP, Kubiak JZ (2014) Development of gonads, sex determination, and sex reversal in Xenopus. In: Kloc M, Kubiak JZ (eds) Xenopus development, 1st edn. John Wiley and Sons, Inc, New York

    Google Scholar 

  22. Kvarnryd M, Grabic R, Brandt I, Berg C (2011) Early life progestin exposure causes arrested oocyte development, oviductal agenesis and sterility in adult Xenopus tropicalis frogs. Aquat Toxicol 103:18–24

    Article  CAS  Google Scholar 

  23. Berg C (2012) An amphibian model for developmental and reproductive toxicity. Methods Mol Biol 889:73–83

    Article  CAS  Google Scholar 

  24. Navarro-Martín L, Velasco-Santamaría YM, Duarte-Guterman P, Robertson C, Lanctôt C, Pauli B, Trudeau VL (2012) Sexing frogs by real-time PCR: using aromatase (cyp19) as an early ovarian differentiation marker. Sex Dev 6:303–315

    Article  Google Scholar 

  25. Hausen P, Riebesell M (1991) The early development of Xenopus Laevis, an atlas of the histology. Verlag der Zeitschrift für Naurforschung, Germany

    Google Scholar 

  26. Kalt MR (1976) Morphology and kinetics of spermatogenesis in Xenopus laevis. J Exp Zool 195:393–407

    Article  CAS  Google Scholar 

  27. Lephart ED, Simpson ER (1991) Assay of aromatse activity. Methods Enzymol 206:477–483

    Article  CAS  Google Scholar 

  28. Hutchinson TH, Shillabeer N et al (2006) Acute and chronic effects of carrier solvents in aquatic organisms: a critical review. Aquat Toxicol 76:69–92

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to all people that have been involved in the development of the amphibian test system for developmental and reproductive toxicity, especially the PhD students Irina Gyllenhammar, Moa Säfholm and Erika Jansson, the postdocs, the master students, research assistants, and professor Ingvar Brandt and the Department of Environmental Toxicology, Uppsala University, Sweden. This work was supported by the Swedish Research Council Formas, the Carl Trygger Foundation and MistraPharma, a research programme supported by the Swedish Foundation for Strategic Environmental Research (Mistra).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Berg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Berg, C. (2019). The Xenopus tropicalis Model for Studies of Developmental and Reproductive Toxicity. In: Hansen, J., Winn, L. (eds) Developmental Toxicology. Methods in Molecular Biology, vol 1965. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9182-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9182-2_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9181-5

  • Online ISBN: 978-1-4939-9182-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics