Skip to main content

Drosophila as a Model for Developmental Toxicology: Using and Extending the Drosophotoxicology Model

  • Protocol
  • First Online:
Developmental Toxicology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1965))

Abstract

Fruit flies, Drosophila melanogaster, have been traditionally valued as a simple model system due to their easy and inexpensive culture, their relatively compact genome, and the variety of available genetic tools. However, due to similarities of their neurological and developmental pathways with those of vertebrates, Drosophila also offers advantages for developmental toxicity assays. The ability to distinguish the effects of a toxicant on adult females, males, and the developing offspring adds to the usefulness of this model. Here we describe key techniques to screen chemicals and other potential emerging toxicants such as nanoparticles on adult Drosophila female and male reproductive success. In addition, assessments of relative toxicity can be revealed by viability assays at each developmental stage from the embryo to the pharate, or preemergent, adult.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bellen HJ, Tong C, Tsuda H (2010) 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nat Rev Neurosci 11:514–522

    Article  CAS  Google Scholar 

  2. Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276:565–570

    Article  CAS  Google Scholar 

  3. Schneider I, Amemiya C (2016) Developmental-genetic toolkit for evolutionary developmental biology. In: Kliman (ed) Encyclopedia of evolutionary biology, 1st edn. Academic Press, Oxford

    Google Scholar 

  4. Adams MD, Celniker SE, Holt RA et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  Google Scholar 

  5. A Database of Drosophila Genes and Genomes (2017) FlyBase. flybase.org. Accessed 10 Oct 2017

  6. Maygold SJ, Crosby MA, Goodman JL, the FlyBase Consortium (2016) Using FlyBase, a database of Drosophila genes & genomes. Methods Mol Biol 1478:1–31

    Article  Google Scholar 

  7. Rand MD (2010) Drosophotoxicology: the growing potential for Drosophila in neurotoxicology. Neurotoxicol Teratol 32:74–83

    Article  CAS  Google Scholar 

  8. Kahsai L, Zars T (2011) Learning and memory in Drosophila: behavior, genetics, and neural systems. Int Rev Neurobiol 99:139–167

    Article  Google Scholar 

  9. Nichols CD, Becnel J, Pandey UB (2012) Methods to assay Drosophila behavior. J Vis Exp 61:e3795

    Google Scholar 

  10. Chifiriuc MC, Ratiu AC, Popa M, Ecovoiu AA (2016) Drosophotoxicology: an emerging research area for assessing nanoparticles interaction with living organisms. Int J Mol Sci 17:36

    Article  Google Scholar 

  11. Taghavi SM, Momenpour M, Azarian M, Ahmadian M, Souri F, Taghavi SA, Sadeghain M, Karchani M (2013) Effects of nanoparticles on the environment and outdoor workplaces. Electron Physician 5:706–712

    PubMed  PubMed Central  Google Scholar 

  12. Drosophila fruit juice egg plates (2007) Cold Spring Harb. Protocol. Cshprotocols.cshlp.org Accessed 10 Oct 2017

  13. Ringer’s Solution (pH 7.3–7.4) (2008) Cold Spring Harb. Protocol. Cshprotocols.cshlp.org Accessed 10 Oct 2017

  14. Sources of Supplies and Equipment for Drosophila Maintenance (2017) Bloomington Drosophila Stock Center at Indiana University. flystocks.bio.indiana.edu Accessed 10 Oct 2017

  15. Drosophila Species Stock Center (2017) UC San Diego Drosophila Stock Center. http://stockcenterucsdedu Accessed 10 Oct 2017

  16. Bloomington Drosophila Stock Center at Indiana University (2017) Bloomington Drosophila Stock Center at Indiana University. flystocks.bio.indiana.edu Accessed 10 Oct 2017

  17. Flagg RO (1971) Carolina Drosophila manual. Carolina Biological Supply Co., Burlington, NC

    Google Scholar 

  18. Campos-Ortega JA, Hartenstein V (1985) A summary of Drosophila embryogenesis. In: The embryonic development of Drosophila melanogaster. Springer-Verlag, Berlin

    Chapter  Google Scholar 

  19. Hartenstein V (1993) Atlas of Drosophila development. Cold Spring Harbor Press, Cold Spring Harbor, NY

    Google Scholar 

  20. Weigmann K, Klapper R, Strasser T, Rickert C, Technau G, Jackle H, Janning W, Klambt C (2003) FlyMove – a new way to look at development of Drosophila. Trends Genet 19:310

    Article  CAS  Google Scholar 

  21. Doane WW (1967) Drosophila. In: Wilt FH, Wessells NK (eds) Methods in developmental biology. Thomas Y. Crowell Co., New York

    Google Scholar 

  22. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  23. Ashburner M, Roote J (2000) Laboratory culture of Drosophila. In: Sullivan W, Ashburner M, Hawley R (eds) Drosophila protocols. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  24. Han X, Geller B, Moniz K, Das P, Chippindale AK, Walker VK (2014) Monitoring the developmental impact of copper and silver nanoparticle exposure in Drosophila and their microbiomes. Sci Total Environ 487:822–829

    Article  CAS  Google Scholar 

  25. Pinto VV, Ferreira MJ, Silva R, Santos HA, Silva F, Pereira CM (2010) Long time effect on the stability of silver nanoparticles in aqueous medium: effect of the synthesis and storage conditions. Physicochem Eng Aspects 364:19–25

    Article  CAS  Google Scholar 

  26. Affleck JG, Neumann K, Wong L, Walker VK (2006) The effects of methotrexate on Drosophila development, female fecundity, and gene expression. Toxicol Sci 89:495–503

    Article  CAS  Google Scholar 

  27. Rand MD, Montgormery SL, Prince L, Vorojeikina D (2014) Developmental toxicity assays using the Drosophila model. Curr Protoc Toxicol 59:1.12.1–1.1220

    Article  Google Scholar 

  28. Lozinsky OV, Lushchak OV, Storey JM, Storey KB, Lushchak VI (2013) The mitochondrial uncoupler 2,4-dinitrophenol attenuates sodium nitroprusside-induced toxicity in Drosophila melanogaster: potential involvement of free radicals. Comp Biochem Physiol C Toxicol Pharmacol 158:244–252

    Article  CAS  Google Scholar 

  29. Terhzaz S, Cabrero P, Brinzer RA, Halberg KA, Dow JAT, Davies SA (2015) A novel role of Drosophila cytochrome P450-4e2 in permethrin insecticide tolerance. Insect Biochem Mol Biol 67:38–46

    Article  CAS  Google Scholar 

  30. Misra S, Kumar A, Ratnasekhar C, Sharma V, Mudiam MK, Ravi RK (2014) Exposure to endosulfan influences sperm competition in Drosophila melanogaster. Sci Rep 4:7433

    Article  CAS  Google Scholar 

  31. Linford NJ, Bilgir C, Ro J, Pletcher SD (2013) Measurement of lifespan in Drosophila melanogaster. J Vis Exp 71:50068

    Google Scholar 

  32. Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Amer Statist Assn 53:457–481

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Vancouver Island University Research Awards Committee (VIURAC) and an NSERC Canada Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joslynn G. Affleck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Affleck, J.G., Walker, V.K. (2019). Drosophila as a Model for Developmental Toxicology: Using and Extending the Drosophotoxicology Model. In: Hansen, J., Winn, L. (eds) Developmental Toxicology. Methods in Molecular Biology, vol 1965. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9182-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9182-2_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9181-5

  • Online ISBN: 978-1-4939-9182-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics