Skip to main content

Characterization of Enzymatic Reactions Using ITC

  • Protocol
  • First Online:
Microcalorimetry of Biological Molecules

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1964))

Abstract

Life is governed by a complex and tightly regulated sequence of biochemical reactions, catalyzed by enzymes. Characterizing enzyme activity is extremely important both to understand biological processes and to develop new industrial applications. Calorimetry represents an ideal system to measure kinetics of biochemical transformations, because it uses heat, always produced or absorbed during chemical reactions, as a probe.

The following protocol describes the details of experimental setup and data analysis of isothermal titration calorimetry (ITC) experiments aimed to quantify the thermodynamic (ΔH) and kinetic (KM and kcat) parameters of enzyme catalysis. A general guideline to choose the right procedure according to the system under analysis is given, together with some instructions on how to adjust the experimental conditions for obtaining reliable data. The method to analyze the obtained raw ITC curves and to derive the kinetic parameters is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Falconer RJ (2016) Applications of isothermal titration calorimetry - the research and technical developments from 2011 to 2015. J Mol Recognit 29:504–515

    Article  CAS  Google Scholar 

  2. Duff MR Jr, Grubbs J, Howell EE (2011) Isothermal titration calorimetry for measuring macromolecule-ligand affinity. J Vis Exp 55:e2796

    Google Scholar 

  3. Merloni A, Dobrovolska O, Zambelli B, Agostini F, Bazzani M, Musiani F, Ciurli S (2014) Molecular landscape of the interaction between the urease accessory proteins UreE and UreG. Biochim Biophys Acta 1844:1662–1674

    Article  CAS  Google Scholar 

  4. Zambelli B, Danielli A, Romagnoli S, Neyroz P, Ciurli S, Scarlato V (2008) High-affinity Ni2+ binding selectively promotes binding of Helicobacter pylori NikR to its target urease promoter. J Mol Biol 383:1129–1143

    Article  CAS  Google Scholar 

  5. D'Urzo A, Santambrogio C, Grandori R, Ciurli S, Zambelli B (2014) The conformational response to Zn(II) and Ni(II) binding of Sporosarcina pasteurii UreG, an intrinsically disordered GTPase. J Biol Inorg Chem 19:1341–1354

    Article  CAS  Google Scholar 

  6. Zambelli B, Banaszak K, Merloni A, Kiliszek A, Rypniewski W, Ciurli S (2013) Selectivity of Ni(II) and Zn(II) binding to Sporosarcina pasteurii UreE, a metallochaperone in the urease assembly: a calorimetric and crystallographic study. J Biol Inorg Chem 18:1005–1017

    Article  CAS  Google Scholar 

  7. Olsen SN (2006) Applications of isothermal titration calorimetry to measure enzyme kinetics and activity in complex solutions. Thermochim Acta 448:12–18

    Article  CAS  Google Scholar 

  8. Bianconi ML (2007) Calorimetry of enzyme-catalyzed reactions. Biophys Chem 126:59–64

    Article  CAS  Google Scholar 

  9. Demarse NA, Killian MC, Hansen LD, Quinn CF (2013) Determining enzyme kinetics via isothermal titration calorimetry. Methods Mol Biol 978:21–30

    Article  CAS  Google Scholar 

  10. Mazzei L, Ciurli S, Zambelli B (2014) Hot biological catalysis: isothermal titration calorimetry to characterize enzymatic reactions. J Vis Exp 86:e51487

    Google Scholar 

  11. Mazzei L, Ciurli S, Zambelli B (2016) Isothermal titration calorimetry to characterize enzymatic reactions. In: Andrew LF (ed) Methods in enzymology. Academic Press, Cambridge

    Google Scholar 

  12. Hansen LD, Transtrum MK, Quinn C, Demarse N (2016) Enzyme-catalyzed and binding reaction kinetics determined by titration calorimetry. Biochim Biophys Acta 1860:957–966

    Article  CAS  Google Scholar 

  13. Sica L, Gilli R, Briand C, Sari JC (1987) A flow microcalorimetric method for enzyme activity measurements: application to dihydrofolate reductase. Anal Biochem 165:341–348

    Article  CAS  Google Scholar 

  14. Wang WJ, Wang Q, Zhang Y, Lu R, Zhang YL, Yang KW, Lei JE, He Y (2017) Characterization of beta-lactamase activity using isothermal titration calorimetry. Biochim Biophys Acta 1861:2031–2038

    Article  CAS  Google Scholar 

  15. Lonhienne T, Baise E, Feller G, Bouriotis V, Gerday C (2001) Enzyme activity determination on macromolecular substrates by isothermal titration calorimetry: application to mesophilic and psychrophilic chitinases. Biochim Biophys Acta 1545:349–356

    Article  CAS  Google Scholar 

  16. Olsen SN, Lumby E, McFarland K, Borch K, Westh P (2011) Kinetics of enzymatic high-solid hydrolysis of lignocellulosic biomass studied by calorimetry. Appl Biochem Biotechnol 163:626–635

    Article  CAS  Google Scholar 

  17. Mukhanov VS, Hansen LD, Kemp RB (2012) Nanocalorimetry of respiration in micro-organisms in natural waters. Thermochim Acta 531:66–69

    Article  CAS  Google Scholar 

  18. Robador A, LaRowe DE, Jungbluth SP, Lin H-T, Rappé MS, Nealson KH, Amend JP (2016) Nanocalorimetric characterization of microbial activity in deep subsurface oceanic crustal fluids. Front Microbiol 7:454

    Article  Google Scholar 

  19. Michaelis L, Menten M (1913) Die kinetik der invertinwirkung. Biochem Z 49:333–369

    CAS  Google Scholar 

  20. Todd MJ, Gomez J (2001) Enzyme kinetics determined using calorimetry: a general assay for enzyme activity? Anal Biochem 296:179–187

    Article  CAS  Google Scholar 

  21. Transtrum MK, Hansen LD, Quinn C (2015) Enzyme kinetics determined by single-injection isothermal titration calorimetry. Methods 76:194–200

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Zambelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zambelli, B. (2019). Characterization of Enzymatic Reactions Using ITC. In: Ennifar, E. (eds) Microcalorimetry of Biological Molecules. Methods in Molecular Biology, vol 1964. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9179-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9179-2_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9178-5

  • Online ISBN: 978-1-4939-9179-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics