Skip to main content

The Contribution of Differential Scanning Calorimetry for the Study of Peptide/Lipid Interactions

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1964))

Abstract

Membrane-active peptides include a variety of molecules such as antimicrobial (AMP), cell-penetrating (CPP), viral, and amyloid peptides that are implicated in several pathologies. They constitute important targets because they are either at the basis of novel therapies (drug delivery for CPPs or antimicrobial activity for AMPs) or they are the agents causing these pathologies (viral and amyloid peptides). They all share the common property of interacting with the cellular lipid membrane in their mode of action. Therefore, a better understanding of the peptide/lipid (P/L) interaction is essential to help decipher their mechanism of action. Among the different biophysical methods that can be used to fully characterize P/L interactions, differential scanning calorimetry (DSC) allows determining the peptide effect on the lipid phase transitions, a property that reflects the P/L interaction mode. A general protocol for classical DSC experiments for P/L studies will be provided.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Cullis PR, Fenske DB, Hope MJ (1996) Physical properties and functional roles of lipids in membranes. In: Vance DE, Vance JE (eds) Biochemistry of lipids, lipoproteins and membranes. Elsevier, Amsterdam, pp 1–32

    Google Scholar 

  2. Israelachvili JN, Mitchell DJ, Ninham BW (1977) Theory of self-assembly of lipid bilayers and vesicles. Biochim Biophys Acta 470:185–201

    Article  CAS  Google Scholar 

  3. Lee AG (1977) Lipid phase transitions and phase diagrams. I. Lipid phase transitions. Biochim Biophys Acta 472:237–281

    Article  CAS  Google Scholar 

  4. Lee AG (1977) Lipid phase transitions and phase diagrams. II. Mictures involving lipids. Biochim Biophys Acta 472:285–344

    Article  CAS  Google Scholar 

  5. McElhaney RN (1982) The use of differential scanning calorimetry and differential thermal analysis in studies of model and biological membranes. Chem Phys Lipids 30:229–259

    Article  CAS  Google Scholar 

  6. McIntosh TJ (1996) Hydration properties of lamellar and non-lamellar phases of phosphatidylcholine and phosphatidylethanolamine. Chem Phys Lipids 81:117–131

    Article  CAS  Google Scholar 

  7. Epand RM, Bryszewska M (1988) Modulation of the bilayer to hexagonal phase transition and solvation of phosphatidylethanolamines in aqueous salt solutions. Biochemistry 27:8776–8779

    Article  CAS  Google Scholar 

  8. McElhaney RN (1986) Differential scanning calorimetric studies of lipid-protein interactions in model membrane systems. Biochim Biophys Acta 864:361–421

    Article  CAS  Google Scholar 

  9. Seelig J (2004) Thermodynamics of lipid-peptide interactions. Biochim Biophys Acta 1666:40–50

    Article  CAS  Google Scholar 

  10. Heerklotz H (2004) The microcalorimetry of lipid membranes. J Phys Condens Matter 16:441–467

    Article  Google Scholar 

  11. Jimenez-Monreal AM, Villalain J, Aranda FJ, Gomez-Fernandez JC (1998) The phase behavior of aqueous dispersions of unsaturated mixtures of diacylglycerols and phospholipids. Biochim Biophys Acta 1373:209–219

    Article  CAS  Google Scholar 

  12. Epand RM, Bach D, Epand RF, Borochov N, Wachtel E (2001) A new high-temperature transition of crystalline cholesterol in mixtures with phosphatidylserine. Biophys J 81:1511–1520

    Article  CAS  Google Scholar 

  13. Lewis RN, Zhang YP, McElhaney RN (2005) Calorimetric and spectroscopic studies of the phase behavior and organization of lipid bilayer model membranes composed of binary mixtures of dimyristoylphosphatidylcholine and dimyristoylphosphatidylglycerol. Biochim Biophys Acta 1668:203–214

    Article  CAS  Google Scholar 

  14. Garidel P, Blume A (2000) Miscibility of phosphatidylethanolamine-phosphatidylglycerol mixtures as a function of pH and acyl chain length. Eur Biophys J 28:629–638

    Article  CAS  Google Scholar 

  15. Raudino A (1995) Lateral inhomogeneous lipid membranes: theoretical aspects. Adv Colloid Interf Sci 57:229–285

    Article  CAS  Google Scholar 

  16. Almeida PF (2009) Thermodynamics of lipid interactions in complex bilayers. Biochim Biophys Acta 1788:72–85

    Article  CAS  Google Scholar 

  17. Riske KA, Barroso RP, Vequi-Suplicy CC, Germano R, Henriques VB et al (2009) Lipid bilayer pre-transition as the beginning of the melting process. Biochim Biophys Acta 1788:954–963

    Article  CAS  Google Scholar 

  18. Lichtenberg D, Freire E, Schmidt CF, Barenholz Y, Felgner PL et al (1981) Effect of surface curvature on stability, thermodynamic behavior, and osmotic activity of dipalmitoylphosphatidylcholine single lamellar vesicles. Biochemistry 20:3462–3467

    Article  CAS  Google Scholar 

  19. Mason JT, Huang C, Biltonen RL (1983) Effect of liposomal size on the calorimetric behavior of mixed-chain phosphatidylcholine bilayer dispersions. Biochemistry 22:2013–2018

    Article  CAS  Google Scholar 

  20. Rouser G, Fkeischer S, Yamamoto A (1970) Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5:494–496

    Article  CAS  Google Scholar 

  21. Lohner K, Prenner EJ (1999) Differential scanning calorimetry and X-ray diffraction studies of the specificity of the interaction of antimicrobial peptides with membrane-mimetic systems. Biochim Biophys Acta 1462:141–156

    Article  CAS  Google Scholar 

  22. Leidy C, Wolkers WF, Jorgensen K, Mouritsen OG, Crowe JH (2001) Lateral organization and domain formation in a two-component lipid membrane system. Biophys J 80:1819–1828

    Article  CAS  Google Scholar 

  23. Shimshick EJ, Kleemann W, Hubbell WL, McConnell HM (1973) Lateral phase separations in membranes. J Supramol Struct 1:285–294

    Article  CAS  Google Scholar 

  24. Joanne P, Galanth C, Goasdoue N, Nicolas P, Sagan S et al (2009) Lipid reorganization induced by membrane-active peptides probed using differential scanning calorimetry. Biochim Biophys Acta 1788:1772–1781

    Article  CAS  Google Scholar 

  25. Epand RM (2007) Detecting the presence of membrane domains using DSC. Biophys Chem 126:197–200

    Article  CAS  Google Scholar 

  26. Epand RF, Wang G, Berno B, Epand RM (2009) Lipid segregation explains selective toxicity of a series of fragments derived from the human cathelicidin LL-37. Antimicrob Agents Chemother 53:3705–3714

    Article  CAS  Google Scholar 

  27. Polozov IV, Polozova AI, Molotkovsky JG, Epand RM (1997) Amphipathic peptide affects the lateral domain organization of lipid bilayers. Biochim Biophys Acta 1328:125–139

    Article  CAS  Google Scholar 

  28. Alves ID, Goasdoue N, Correia I, Aubry S, Galanth C et al (2008) Membrane interaction and perturbation mechanisms induced by two cationic cell penetrating peptides with distinct charge distribution. Biochim Biophys Acta 1780:948–959

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel D. Alves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jobin, ML., Alves, I.D. (2019). The Contribution of Differential Scanning Calorimetry for the Study of Peptide/Lipid Interactions. In: Ennifar, E. (eds) Microcalorimetry of Biological Molecules. Methods in Molecular Biology, vol 1964. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9179-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9179-2_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9178-5

  • Online ISBN: 978-1-4939-9179-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics