Skip to main content

Targeted Amplification and Sequencing of Ancient Environmental and Sedimentary DNA

  • Protocol
  • First Online:
Book cover Ancient DNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1963))

Abstract

All organisms release their DNA into the environment through processes such as excretion and the senescence of tissues and limbs. This DNA, often referred to as environmental DNA (eDNA) or sedimentary ancient DNA (sedaDNA), can be recovered from both present-day and ancient soils, fecal samples, bodies of water and lake cores, and even air. While eDNA is a potentially useful record of past and present biodiversity, several challenges complicate data generation and interpretation of results. Most importantly, eDNA samples tend to be highly taxonomically mixed, and the target organism or group of organisms may be present at very low abundance within this mixture. To overcome this challenge, enrichment approaches are often used to target specific taxa of interest. Here, we describe a protocol to amplify metabarcodes or short, variable loci that identify lineages within broad taxonomic groups (e.g., plants, mammals), using the polymerase chain reaction (PCR) with established generic “barcode” primers. We also provide a catalog of animal and plant barcode primers that, because they target relatively short fragments of DNA, are potentially suitable for use with degraded DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jerde CL, Mahon AR, Chadderton WL, Lodge DM (2011) “Sight-unseen” detection of rare aquatic species using environmental DNA. Conserv Lett 4:150–157. https://doi.org/10.1111/j.1755-263X.2010.00158.x

    Article  Google Scholar 

  2. Taberlet P, Bouvet J (1991) A single plucked feather as a source of DNA for bird genetic studies. Auk 108:959–960

    Google Scholar 

  3. Soininen EM, Valentini A, Coissac E et al (2009) Analysing diet of small herbivores: the efficiency of DNA barcoding coupled with high-throughput pyrosequencing for deciphering the composition of complex plant mixtures. Front Zool 6:16. https://doi.org/10.1186/1742-9994-6-16

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sønstebø JH, Gielly L, Brysting AK et al (2010) Using next-generation sequencing for molecular reconstruction of past Arctic vegetation and climate. Mol Ecol Resour 10:1009–1018. https://doi.org/10.1111/j.1755-0998.2010.02855.x

    Article  CAS  PubMed  Google Scholar 

  5. Wheat RE, Allen JM, Miller SDL et al (2016) Environmental DNA from residual saliva for efficient noninvasive genetic monitoring of Brown Bears (Ursus arctos). PLoS One 11:e0165259. https://doi.org/10.1371/journal.pone.0165259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nichols RV, Königsson H, Danell K, Spong G (2012) Browsed twig environmental DNA: diagnostic PCR to identify ungulate species. Mol Ecol Resour 12:983–989. https://doi.org/10.1111/j.1755-0998.2012.03172.x

    Article  CAS  PubMed  Google Scholar 

  7. Bohmann K, Evans A, Gilbert MTP et al (2014) Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol Evol 29:358–367. https://doi.org/10.1016/j.tree.2014.04.003

    Article  PubMed  Google Scholar 

  8. Pedersen MW, Ruter A, Schweger C et al (2016) Postglacial viability and colonization in North America’s ice-free corridor. Nature 537:45–49. https://doi.org/10.1038/nature19085

    Article  CAS  PubMed  Google Scholar 

  9. Graham RW, Belmecheri S, Choy K et al (2016) Timing and causes of mid-Holocene mammoth extinction on St. Paul Island, Alaska. Proc Natl Acad Sci U S A 113:9310–9314. https://doi.org/10.1073/pnas.1604903113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Slon V, Hopfe C, Weiß CL et al (2017) Neandertal and Denisovan DNA from Pleistocene sediments. Science 356:605–608. https://doi.org/10.1126/science.aam9695

    Article  CAS  PubMed  Google Scholar 

  11. Coissac E, Hollingsworth PM, Lavergne S, Taberlet P (2016) From barcodes to genomes: extending the concept of DNA barcoding. Mol Ecol 25:1423–1428. https://doi.org/10.1111/mec.13549

    Article  CAS  PubMed  Google Scholar 

  12. Taberlet P, Coissac E, Pompanon F et al (2007) Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res 35:e14. https://doi.org/10.1093/nar/gkl938

    Article  CAS  PubMed  Google Scholar 

  13. Epp LS, Boessenkool S, Bellemain EP et al (2012) New environmental metabarcodes for analysing soil DNA: potential for studying past and present ecosystems. Mol Ecol 21:1821–1833. https://doi.org/10.1111/j.1365-294X.2012.05537.x

    Article  CAS  PubMed  Google Scholar 

  14. Bienert F, De Danieli S, Miquel C et al (2012) Tracking earthworm communities from soil DNA. Mol Ecol 21:2017–2030. https://doi.org/10.1111/j.1365-294X.2011.05407.x

    Article  CAS  PubMed  Google Scholar 

  15. Willerslev E, Cappellini E, Boomsma W et al (2007) Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science 317:111–114. https://doi.org/10.1126/science.1141758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Riaz T, Shehzad W, Viari A et al (2011) ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Res 39:e145. https://doi.org/10.1093/nar/gkr732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Valentini A, Taberlet P, Miaud C et al (2016) Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol Ecol 25:929–942. https://doi.org/10.1111/mec.13428

    Article  CAS  PubMed  Google Scholar 

  18. Dalén L, Lagerholm VK, Nylander JAA et al (2017) Identifying bird remains using ancient DNA barcoding. Genes (Basel). https://doi.org/10.3390/genes8060169

  19. Taylor PG (1996) Reproducibility of ancient DNA sequences from extinct Pleistocene fauna. Mol Biol Evol 13(1):283–285

    Article  CAS  PubMed  Google Scholar 

  20. Boessenkool S, Epp LS, Haile J et al (2012) Blocking human contaminant DNA during PCR allows amplification of rare mammal species from sedimentary ancient DNA. Mol Ecol 21:1806–1815. https://doi.org/10.1111/j.1365-294X.2011.05306.x

    Article  CAS  PubMed  Google Scholar 

  21. Giguet-Covex C, Pansu J, Arnaud F et al (2014) Long livestock farming history and human landscape shaping revealed by lake sediment DNA. Nat Commun 5:3211. https://doi.org/10.1038/ncomms4211

    Article  CAS  PubMed  Google Scholar 

  22. Tillmar AO, Dell’Amico B, Welander J, Holmlund G (2013) A universal method for species identification of mammals utilizing next generation sequencing for the analysis of DNA mixtures. PLoS One 8:e83761. https://doi.org/10.1371/journal.pone.0083761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nichols RV, Vollmers C, Newsom LA et al (2018) Minimizing polymerase biases in metabarcoding. Mol Ecol Res 18:927–939. https://doi.org/10.1111/1755-0998.12895

  24. Seersholm FV, Pedersen MW, Søe MJ et al (2016) DNA evidence of bowhead whale exploitation by Greenlandic Paleo-Inuit 4,000 years ago. Nat Commun 7:13389. https://doi.org/10.1038/ncomms13389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schnell IB, Bohmann K, Gilbert MTP (2015) Tag jumps illuminated—reducing sequence-to-sample misidentifications in metabarcoding studies. Mol Ecol Resour 15:1289–1303. https://doi.org/10.1111/1755-0998.12402

    Article  CAS  PubMed  Google Scholar 

  26. Rohland N, Reich D (2012) Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res 22:939–946. https://doi.org/10.1101/gr.128124.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

P.D.H. acknowledges support from the Research Council of Norway (Grant 250963: “ECOGEN”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beth Shapiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nichols, R.V., Curd, E., Heintzman, P.D., Shapiro, B. (2019). Targeted Amplification and Sequencing of Ancient Environmental and Sedimentary DNA. In: Shapiro, B., Barlow, A., Heintzman, P., Hofreiter, M., Paijmans, J., Soares, A. (eds) Ancient DNA. Methods in Molecular Biology, vol 1963. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9176-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9176-1_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9175-4

  • Online ISBN: 978-1-4939-9176-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics