Skip to main content

Protein-Level Statistical Analysis of Quantitative Label-Free Proteomics Data with ProStaR

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1959))

Abstract

ProStaR is a software tool dedicated to differential analysis in label-free quantitative proteomics. Practically, once biological samples have been analyzed by bottom-up mass spectrometry-based proteomics, the raw mass spectrometer outputs are processed by bioinformatics tools, so as to identify peptides and quantify them, by means of precursor ion chromatogram integration. Then, it is classical to use these peptide-level pieces of information to derive the identity and quantity of the sample proteins before proceeding with refined statistical processing at protein-level, so as to bring out proteins which abundance is significantly different between different groups of samples. To achieve this statistical step, it is possible to rely on ProStaR, which allows the user to (1) load correctly formatted data, (2) clean them by means of various filters, (3) normalize the sample batches, (4) impute the missing values, (5) perform null hypothesis significance testing, (6) check the well-calibration of the resulting p-values, (7) select a subset of differentially abundant proteins according to some false discovery rate, and (8) contextualize these selected proteins into the Gene Ontology. This chapter provides a detailed protocol on how to perform these eight processing steps with ProStaR.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Zhang Y, Fonslow BR, Shan B et al (2013) Protein analysis by shotgun/bottom-up proteomics. Chem Rev 113(4):2343–2394. https://doi.org/10.1021/cr3003533

    Google Scholar 

  2. Ong SE, Foster LJ, Mann M (2003) Mass spectrometric-based approaches in quantitative proteomics. Methods 29(2):124–130. https://doi.org/10.1016/S1046-2023(02)00303-1

    Google Scholar 

  3. Schwanhäusser B, Busse D, Li N et al (2011) Global quantification of mammalian gene expression control. Nature 473(7347):337–342. https://doi.org/10.1038/nature10098

    Google Scholar 

  4. Tyanova S, Temu T, Sinitcyn P et al (2016) The Perseus computational platform for comprehensive analysis of (prote) omics data. Nat Methods 13(9):731–740. https://doi.org/10.1038/nmeth.3901

    Google Scholar 

  5. Choi M, Chang CY, Clough T et al (2014) MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinformatics 30(17):2524–2526. https://doi.org/10.1093/bioinformatics/btu305

    Google Scholar 

  6. MacLean B, Tomazela DM, Shulman N et al (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26(7):966–968. https://doi.org/10.1093/bioinformatics/btq054

    Google Scholar 

  7. Zhang X, Smits AH, van Tilburg GB et al (2018) Proteome-wide identification of ubiquitin interactions using UbIA-MS. Nat Protoc 13(3):530–550. https://doi.org/10.1038/nprot.2017.147

    Google Scholar 

  8. Contrino B, Miele E, Tomlinson R et al (2017) DOSCHEDA: a web application for interactive chemoproteomics data analysis. PeerJ Comput Sci 3:e129. https://doi.org/10.7717/peerj-cs.129

    Google Scholar 

  9. Singh S, Hein MY, Stewart AF (2016) msVolcano: a flexible web application for visualizing quantitative proteomics data. Proteomics 16(18):2491–2494. https://doi.org/10.1002/pmic.201600167

    Google Scholar 

  10. Efstathiou G, Antonakis AN, Pavlopoulos GA et al (2017) ProteoSign: an end-user online differential proteomics statistical analysis platform. Nucleic Acids Res 45(W1):W300–W306. https://doi.org/10.1093/nar/gkx444

    Google Scholar 

  11. Goeminne LJ, Argentini A, Martens L et al (2015) Summarization vs peptide-based models in label-free quantitative proteomics: performance, pitfalls, and data analysis guidelines. J Proteome Res 14(6):2457–2465. https://doi.org/10.1021/pr501223t

    Google Scholar 

  12. Wieczorek S, Combes F, Lazar C et al (2017) DAPAR & ProStaR: software to perform statistical analyses in quantitative discovery proteomics. Bioinformatics 33(1):135–136. https://doi.org/10.1093/bioinformatics/btw580

    Google Scholar 

  13. Gatto L, Lilley K (2012) MSnbase-an R/bioconductor package for isobaric tagged mass spectrometry data visualization, processing and quantitation. Bioinformatics 28(2):288–289. https://doi.org/10.1093/bioinformatics/btr645

    Google Scholar 

  14. Wieczorek S, Combes F, Burger T (2018) DAPAR and ProStaR user manual. Bioconductor. https://www.bioconductor.org/packages/release/bioc/vignettes/Prostar/inst/doc/Prostar_UserManual.pdf?attredirects=0

  15. RStudio Team (2015) RStudio: integrated development for R. RStudio, Inc., Boston, MA. http://www.rstudio.com/

    Google Scholar 

  16. http://stat.ethz.ch/R-manual/R-devel/library/stats/html/hclust.html

  17. Bolstad B (2018) preprocessCore: a collection of pre-processing functions. R package version 1.42.0. https://github.com/bmbolstad/preprocessCore

  18. Huber W, von Heydebreck A, Sueltmann H et al (2002) Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18(Suppl 1):S96–S104. https://doi.org/10.1093/bioinformatics/18.suppl_1.S96

    Google Scholar 

  19. Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Statist Assoc 74(368):829–836. https://doi.org/10.1080/01621459.1979.10481038

    Google Scholar 

  20. Smyth GK (2005) Limma: linear models for microarray data. In: Gentleman R, Carey VJ, Huber W, Irizarry RA, Dudoit S (eds) Bioinformatics and computational biology solutions using R and bioconductor. Statistics for biology and health. Springer, New York, NY, pp 397–420. https://doi.org/10.1007/0-387-29362-0_23

    Google Scholar 

  21. Giai Gianetto Q, Combes F, Ramus C et al (2016) Calibration plot for proteomics: a graphical tool to visually check the assumptions underlying FDR control in quantitative experiments. Proteomics 16(1):29–32. https://doi.org/10.1002/pmic.201500189

    Google Scholar 

  22. Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25–29. https://doi.org/10.1038/75556

    Google Scholar 

  23. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. https://doi.org/10.1038/nbt.1511

    Google Scholar 

  24. Giai Gianetto Q, Couté Y, Bruley C et al (2016) Uses and misuses of the fudge factor in quantitative discovery proteomics. Proteomics 16(14):1955–1960. https://doi.org/10.1002/pmic.201600132

    Google Scholar 

Download references

Acknowledgment

ProStaR software development was supported by grants from the “Investissement d’Avenir Infrastructures Nationales en Biologie et Santé” program (ProFI project, ANR-10-INBS-08) and by the French National Research Agency (GRAL project, ANR-10-LABX-49-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Burger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wieczorek, S., Combes, F., Borges, H., Burger, T. (2019). Protein-Level Statistical Analysis of Quantitative Label-Free Proteomics Data with ProStaR. In: Brun, V., Couté, Y. (eds) Proteomics for Biomarker Discovery. Methods in Molecular Biology, vol 1959. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9164-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9164-8_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9163-1

  • Online ISBN: 978-1-4939-9164-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics