Skip to main content

Development and Validation of Multiple Reaction Monitoring (MRM) Assays for Clinical Applications

  • Protocol
  • First Online:
Proteomics for Biomarker Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1959))

Abstract

Selected/multiple reaction monitoring-mass spectrometry (SRM/MRM) is an analytical method that is frequently combined to the use of stable isotope-labeled standard (SIS) peptides for absolute protein quantification. The application of SRM/MRM is a relatively recent development in the proteomics field for analysis of biological samples (plasma, urine, cell/tissue lysates) targeting to a large extent biomarker validation. Although MRM generally by-passes the use of antibodies (being linked to sub-optimal assay specificity in many cases), bioanalytical validation of MRM protocols has not been robustly appliedĀ because of sensitivity issues, in contrary to antibody-based methods. In this chapter, we will discuss the points that should be addressed for MRM method development in clinical proteomics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Domanski D, Percy AJ, Yang J et al (2012) MRM-based multiplexed quantitation of 67 putative cardiovascular disease biomarkers in human plasma. Proteomics 12(8):1222ā€“1243. https://doi.org/10.1002/pmic.201100568

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Garcia-Gimenez JL, Roma-Mateo C, Carbonell N et al (2017) A new mass spectrometry-based method for the quantification of histones in plasma from septic shock patients. Sci Rep 7(1):10643. https://doi.org/10.1038/s41598-017-10830-z

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  3. LeBlanc A, Michaud SA, Percy AJ et al (2017) Multiplexed MRM-based protein quantitation using two different stable isotope-labeled peptide isotopologues for calibration. J Proteome Res 16(7):2527ā€“2536. https://doi.org/10.1021/acs.jproteome.7b00094

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Lin CH, Krisp C, Packer NH et al (2017) Development of a data independent acquisition mass spectrometry workflow to enable glycopeptide analysis without predefined glycan compositional knowledge. J Proteome 172:68ā€“75. https://doi.org/10.1016/j.jprot.2017.10.011

    ArticleĀ  CASĀ  Google ScholarĀ 

  5. Percy AJ, Chambers AG, Smith DS et al (2013) Standardized protocols for quality control of MRM-based plasma proteomic workflows. J Proteome Res 12(1):222ā€“233. https://doi.org/10.1021/pr300893w

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Percy AJ, Chambers AG, Yang J et al (2013) Multiplexed MRM-based quantitation of candidate cancer biomarker proteins in undepleted and non-enriched human plasma. Proteomics 13(14):2202ā€“2215. https://doi.org/10.1002/pmic.201200316

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Percy AJ, Chambers AG, Yang J et al (2012) Comparison of standard- and nano-flow liquid chromatography platforms for MRM-based quantitation of putative plasma biomarker proteins. Anal Bioanal Chem 404(4):1089ā€“1101. https://doi.org/10.1007/s00216-012-6010-y

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Percy AJ, Chambers AG, Yang J et al (2014) Advances in multiplexed MRM-based protein biomarker quantitation toward clinical utility. Biochim Biophys Acta 1844(5):917ā€“926. https://doi.org/10.1016/j.bbapap.2013.06.008

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Percy AJ, Mohammed Y, Yang J et al (2015) A standardized kit for automated quantitative assessment of candidate protein biomarkers in human plasma. Bioanalysis 7(23):2991ā€“3004. https://doi.org/10.4155/bio.15.222

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Percy AJ, Simon R, Chambers AG et al (2014) Enhanced sensitivity and multiplexing with 2D LC/MRM-MS and labeled standards for deeper and more comprehensive protein quantitation. J Proteome 106:113ā€“124. https://doi.org/10.1016/j.jprot.2014.04.024

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Percy AJ, Yang J, Chambers AG et al (2016) Protocol for standardizing high-to-moderate abundance protein biomarker assessments through an MRM-with-standard-peptides quantitative approach. In: Mirzaei H, Carrasco M (eds) Modern proteomicsā€”sample preparation, analysis and practical applications. Advances in experimental medicine and biology, vol 919. Springer, Cham. https://doi.org/10.1007/978-3-319-41448-5_24

    ChapterĀ  Google ScholarĀ 

  12. Rezeli M, Sjodin K, Lindberg H et al (2017) Quantitation of 87 proteins by nLC-MRM/MS in human plasma: workflow for large-scale analysis of biobank samples. J Proteome Res 16(9):3242ā€“3254. https://doi.org/10.1021/acs.jproteome.7b00235

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Richard VR, Domanski D, Percy AJ et al (2017) An online 2D-reversed-phaseā€”reversed-phase chromatographic method for sensitive and robust plasma protein quantitation. J Proteome 168:28ā€“36. https://doi.org/10.1016/j.jprot.2017.07.018

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Duriez E, Masselon CD, Mesmin C et al (2017) Large-scale SRM screen of urothelial bladder cancer candidate biomarkers in urine. J Proteome Res 16(4):1617ā€“1631. https://doi.org/10.1021/acs.jproteome.6b00979

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Gallien S, Duriez E, Demeure K et al (2013) Selectivity of LC-MS/MS analysis: implication for proteomics experiments. J Proteome 81:148ā€“158. https://doi.org/10.1016/j.jprot.2012.11.005

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Mermelekas G, Vlahou A, Zoidakis J (2015) SRM/MRM targeted proteomics as a tool for biomarker validation and absolute quantification in human urine. Expert Rev Mol Diagn 15(11):1441ā€“1454. https://doi.org/10.1586/14737159.2015.1093937

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Percy AJ, Yang J, Hardie DB et al (2015) Precise quantitation of 136 urinary proteins by LC/MRM-MS using stable isotope labeled peptides as internal standards for biomarker discovery and/or verification studies. Methods 81:24ā€“33. https://doi.org/10.1016/j.ymeth.2015.04.001

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Russo P, Hood BL, Bateman NW et al (2017) Quantitative mass spectrometry by isotope dilution and multiple reaction monitoring (MRM). In: Espina V (ed) Molecular profiling, Methods in Molecular Biology, vol 1606. Humana Press, New York, NY, pp 313ā€“332. https://doi.org/10.1007/978-1-4939-6990-6_20

    ChapterĀ  Google ScholarĀ 

  19. Li XJ, Hayward C, Fong PY et al (2013) A blood-based proteomic classifier for the molecular characterization of pulmonary nodules. Sci Transl Med 5(207):207ra142. https://doi.org/10.1126/scitranslmed.3007013

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  20. Vachani A, Hammoud Z, Springmeyer S et al (2015) Clinical utility of a plasma protein classifier for indeterminate lung nodules. Lung 193(6):1023ā€“1027. https://doi.org/10.1007/s00408-015-9800-0

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  21. Kim H, Yu SJ, Yeo I et al (2017) Prediction of response to Sorafenib in hepatocellular carcinoma: a putative marker panel by multiple reaction monitoring-mass spectrometry (MRM-MS). Mol Cell Proteomics 16(7):1312ā€“1323. https://doi.org/10.1074/mcp.M116.066704

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  22. Doerr A (2011) Targeted proteomics. Nat Methods 8:43. https://doi.org/10.1038/nmeth.f.329

    ArticleĀ  CASĀ  Google ScholarĀ 

  23. Vidova V, Spacil Z (2017) A review on mass spectrometry-based quantitative proteomics: targeted and data independent acquisition. Anal Chim Acta 964:7ā€“23. https://doi.org/10.1016/j.aca.2017.01.059

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Jani D, Allinson J, Berisha F et al (2016) Recommendations for use and fit-for-purpose validation of biomarker multiplex ligand binding assays in drug development. AAPS J 18(1):1ā€“14. https://doi.org/10.1208/s12248-015-9820-y

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Chatziharalambous D, Lygirou V, Latosinska A et al (2016) Analytical performance of ELISA assays in urine: one more bottleneck towards biomarker validation and clinical implementation. PLoS One 11(2):e0149471. https://doi.org/10.1371/journal.pone.0149471

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  26. US FDA (2001) Guidance for industry: bioanalytical method validation. US Department of Health and Human Services, FDA, Center for Drug Evaluation and Research, Rockville, MD. https://www.fda.gov/downloads/Drugs/Guidance/ucm070107.pdf

    Google ScholarĀ 

  27. Makridakis M, Vlahou A (2017) GeLC-MS: a sample preparation method for proteomics analysis of minimal amount of tissue, Methods in molecular biology. Humana Press, New York. https://doi.org/10.1007/7651_2017_76

    BookĀ  Google ScholarĀ 

  28. MacLean B, Tomazela DM, Shulman N et al (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26(7):966ā€“968. https://doi.org/10.1093/bioinformatics/btq054

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  29. Mohammed Y, Domanski D, Jackson AM et al (2014) PeptidePicker: a scientific workflow with web interface for selecting appropriate peptides for targeted proteomics experiments. J Proteome 106:151ā€“161. https://doi.org/10.1016/j.jprot.2014.04.018

    ArticleĀ  CASĀ  Google ScholarĀ 

  30. Klont F, Pouwels SD, Hermans J et al (2018) A fully validated liquid chromatography-mass spectrometry method for the quantification of the soluble receptor of advanced glycation end-products (sRAGE) in serum using immunopurification in a 96-well plate format. Talanta 182:414ā€“421. https://doi.org/10.1016/j.talanta.2018.02.015

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Pappa KI, Kontostathi G, Makridakis M et al (2017) High resolution proteomic analysis of the cervical cancer cell lines secretome documents deregulation of multiple proteases. Cancer Genomics Proteomics 14(6):507ā€“521. https://doi.org/10.21873/cgp.20060

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  32. Kontostathi G, Zoidakis J, Makridakis M et al (2017) Cervical cancer cell line secretome highlights the roles of transforming growth factor-Beta-induced protein ig-h3, peroxiredoxin-2, and NRF2 on cervical carcinogenesis. Biomed Res Int 2017:4180703. https://doi.org/10.1155/2017/4180703

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  33. Desiere F, Deutsch EW, King NL et al (2006) The PeptideAtlas project. Nucleic Acids Res 34(Database issue):D655ā€“D658. https://doi.org/10.1093/nar/gkj040

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Mohammed Y, Percy AJ, Chambers AG et al (2015) Qualis-SIS: automated standard curve generation and quality assessment for multiplexed targeted quantitative proteomic experiments with labeled standards. J Proteome Res 14(2):1137ā€“1146. https://doi.org/10.1021/pr5010955

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgements

Support for this chapter was offered by the Greek GSRT (grant mELISA T1EĪ”K-03551)Ā and the EU COST action CliniMARK (CA16113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerome Zoidakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kontostathi, G., Makridakis, M., Bitsika, V., Tsolakos, N., Vlahou, A., Zoidakis, J. (2019). Development and Validation of Multiple Reaction Monitoring (MRM) Assays for Clinical Applications. In: Brun, V., CoutƩ, Y. (eds) Proteomics for Biomarker Discovery. Methods in Molecular Biology, vol 1959. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9164-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9164-8_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9163-1

  • Online ISBN: 978-1-4939-9164-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics