Skip to main content

Exploring Protein Supersecondary Structure Through Changes in Protein Folding, Stability, and Flexibility

  • Protocol
  • First Online:
Book cover Protein Supersecondary Structures

Abstract

The ability to predict how mutations affect protein structure, folding, and flexibility can elucidate the molecular mechanisms leading to disruption of supersecondary structures, the emergence of phenotypes, as well guiding rational protein engineering. The advent of fast and accurate computational tools has enabled us to comprehensively explore the landscape of mutation effects on protein structures, prioritizing mutations for rational experimental validation.

Here we describe the use of two complementary web-based in silico methods, DUET and DynaMut, developed to infer the effects of mutations on folding, stability, and flexibility and how they can be used to explore and interpret these effects on protein supersecondary structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.canoz.com/sdh/renamepdbchain.pl

References

  1. Andrews KA, Ascher DB, Pires DEV, Barnes DR, Vialard L, Casey RT, Bradshaw N, Adlard J, Aylwin S, Brennan P, Brewer C, Cole T, Cook JA, Davidson R, Donaldson A, Fryer A, Greenhalgh L, Hodgson SV, Irving R, Lalloo F, McConachie M, McConnell VPM, Morrison PJ, Murday V, Park SM, Simpson HL, Snape K, Stewart S, Tomkins SE, Wallis Y, Izatt L, Goudie D, Lindsay RS, Perry CG, Woodward ER, Antoniou AC, Maher ER (2018) Tumour risks and genotype-phenotype correlations associated with germline variants in succinate dehydrogenase subunit genes SDHB, SDHC and SDHD. J Med Genet 55(6):384–394. https://doi.org/10.1136/jmedgenet-2017-105127

    Article  CAS  PubMed  Google Scholar 

  2. Trezza A, Bernini A, Langella A, Ascher DB, Pires DEV, Sodi A, Passerini I, Pelo E, Rizzo S, Niccolai N, Spiga O (2017) A computational approach from gene to structure analysis of the human ABCA4 transporter involved in genetic retinal diseases. Invest Ophthalmol Vis Sci 58(12):5320–5328. https://doi.org/10.1167/iovs.17-22158

    Article  CAS  PubMed  Google Scholar 

  3. Traynelis J, Silk M, Wang Q, Berkovic SF, Liu L, Ascher DB, Balding DJ, Petrovski S (2017) Optimizing genomic medicine in epilepsy through a gene-customized approach to missense variant interpretation. Genome Res 27(10):1715–1729. https://doi.org/10.1101/gr.226589.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Soardi FC, Machado-Silva A, Linhares ND, Zheng G, Qu Q, Pena HB, Martins TMM, Vieira HGS, Pereira NB, Melo-Minardi RC, Gomes CC, Gomez RS, Gomes DA, Pires DEV, Ascher DB, Yu H, Pena SDJ (2017) Familial STAG2 germline mutation defines a new human cohesinopathy. NPJ Genom Med 2:7. https://doi.org/10.1038/s41525-017-0009-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ramdzan YM, Trubetskov MM, Ormsby AR, Newcombe EA, Sui X, Tobin MJ, Bongiovanni MN, Gras SL, Dewson G, Miller JML, Finkbeiner S, Moily NS, Niclis J, Parish CL, Purcell AW, Baker MJ, Wilce JA, Waris S, Stojanovski D, Bocking T, Ang CS, Ascher DB, Reid GE, Hatters DM (2017) Huntingtin inclusions trigger cellular quiescence, deactivate apoptosis, and lead to delayed necrosis. Cell Rep 19(5):919–927. https://doi.org/10.1016/j.celrep.2017.04.029

    Article  CAS  PubMed  Google Scholar 

  6. Jubb HC, Pandurangan AP, Turner MA, Ochoa-Montano B, Blundell TL, Ascher DB (2017) Mutations at protein-protein interfaces: small changes over big surfaces have large impacts on human health. Prog Biophys Mol Biol 128:3–13. https://doi.org/10.1016/j.pbiomolbio.2016.10.002

    Article  CAS  PubMed  Google Scholar 

  7. Chirgadze DY, Ascher DB, Blundell TL, Sibanda BL (2017) DNA-PKcs, allostery, and DNA double-strand break repair: defining the structure and setting the stage. Methods Enzymol 592:145–157. https://doi.org/10.1016/bs.mie.2017.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  8. Casey RT, Ascher DB, Rattenberry E, Izatt L, Andrews KA, Simpson HL, Challis B, Park SM, Bulusu VR, Lalloo F, Pires DEV, West H, Clark GR, Smith PS, Whitworth J, Papathomas TG, Taniere P, Savisaar R, Hurst LD, Woodward ER, Maher ER (2017) SDHA related tumorigenesis: a new case series and literature review for variant interpretation and pathogenicity. Mol Genet Genomic Med 5(3):237–250. https://doi.org/10.1002/mgg3.279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pires DE, Chen J, Blundell TL, Ascher DB (2016) In silico functional dissection of saturation mutagenesis: Interpreting the relationship between phenotypes and changes in protein stability, interactions and activity. Sci Rep 6:19848. https://doi.org/10.1038/srep19848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nemethova M, Radvanszky J, Kadasi L, Ascher DB, Pires DE, Blundell TL, Porfirio B, Mannoni A, Santucci A, Milucci L, Sestini S, Biolcati G, Sorge F, Aurizi C, Aquaron R, Alsbou M, Lourenco CM, Ramadevi K, Ranganath LR, Gallagher JA, van Kan C, Hall AK, Olsson B, Sireau N, Ayoob H, Timmis OG, Sang KH, Genovese F, Imrich R, Rovensky J, Srinivasaraghavan R, Bharadwaj SK, Spiegel R, Zatkova A (2016) Twelve novel HGD gene variants identified in 99 alkaptonuria patients: focus on ‘black bone disease’ in Italy. Eur J Hum Genet 24(1):66–72. https://doi.org/10.1038/ejhg.2015.60

    Article  CAS  PubMed  Google Scholar 

  11. Usher JL, Ascher DB, Pires DE, Milan AM, Blundell TL, Ranganath LR (2015) Analysis of HGD gene mutations in patients with alkaptonuria from the United Kingdom: identification of novel mutations. JIMD Rep 24:3–11. https://doi.org/10.1007/8904_2014_380

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jafri M, Wake NC, Ascher DB, Pires DE, Gentle D, Morris MR, Rattenberry E, Simpson MA, Trembath RC, Weber A, Woodward ER, Donaldson A, Blundell TL, Latif F, Maher ER (2015) Germline mutations in the CDKN2B tumor suppressor gene predispose to renal cell carcinoma. Cancer Discov 5(7):723–729. https://doi.org/10.1158/2159-8290.CD-14-1096

    Article  CAS  PubMed  Google Scholar 

  13. Hnizda A, Fabry M, Moriyama T, Pachl P, Kugler M, Brinsa V, Ascher DB, Carroll WL, Novak P, Zaliova M, Trka J, Rezacova P, Yang JJ, Veverka V (2018) Relapsed acute lymphoblastic leukemia-specific mutations in NT5C2 cluster into hotspots driving intersubunit stimulation. Leukemia. https://doi.org/10.1038/s41375-018-0073-5

  14. Sibanda BL, Chirgadze DY, Ascher DB, Blundell TL (2017) DNA-PKcs structure suggests an allosteric mechanism modulating DNA double-strand break repair. Science 355(6324):520–524. https://doi.org/10.1126/science.aak9654

    Article  CAS  PubMed  Google Scholar 

  15. Vedithi SC, Malhotra S, Das M, Daniel S, Kishore N, George A, Arumugam S, Rajan L, Ebenezer M, Ascher DB, Arnold E, Blundell TL (2018) Structural implications of mutations conferring rifampin resistance in mycobacterium leprae. Sci Rep 8(1):5016. https://doi.org/10.1038/s41598-018-23423-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Karmakar M, Globan M, Fyfe JAM, Stinear TP, Johnson PDR, Holmes NE, Denholm JT, Ascher DB (2018) Analysis of a novel pncA mutation for susceptibility to pyrazinamide therapy. Am J Respir Crit Care Med. https://doi.org/10.1164/rccm.201712-2572LE

  17. Holt KE, McAdam P, Thai PVK, Thuong NTT, Ha DTMH, Lan NN, Lan NH, Nhu NTQ, Hai HT, Ha VTN, Thwaites G, Edwards DJ, Nath AP, Pham K, Ascher DB, Farrar J, Khor CC, Teo YY, Inouye M, Caws M, Dunstan SJ (2018) Frequent transmission of the Mycobacterium tuberculosis Beijing lineage and positive selection for EsxW Beijing variant in Vietnam. Nat Genet 50:849–856

    Article  CAS  Google Scholar 

  18. Singh V, Donini S, Pacitto A, Sala C, Hartkoorn RC, Dhar N, Keri G, Ascher DB, Mondesert G, Vocat A, Lupien A, Sommer R, Vermet H, Lagrange S, Buechler J, Warner DF, McKinney JD, Pato J, Cole ST, Blundell TL, Rizzi M, Mizrahi V (2017) The inosine monophosphate dehydrogenase, GuaB2, is a vulnerable new bactericidal drug target for tuberculosis. ACS Infect Dis 3(1):5–17. https://doi.org/10.1021/acsinfecdis.6b00102

    Article  CAS  PubMed  Google Scholar 

  19. Park Y, Pacitto A, Bayliss T, Cleghorn LA, Wang Z, Hartman T, Arora K, Ioerger TR, Sacchettini J, Rizzi M, Donini S, Blundell TL, Ascher DB, Rhee K, Breda A, Zhou N, Dartois V, Jonnala SR, Via LE, Mizrahi V, Epemolu O, Stojanovski L, Simeons F, Osuna-Cabello M, Ellis L, MacKenzie CJ, Smith AR, Davis SH, Murugesan D, Buchanan KI, Turner PA, Huggett M, Zuccotto F, Rebollo-Lopez MJ, Lafuente-Monasterio MJ, Sanz O, Diaz GS, Lelievre J, Ballell L, Selenski C, Axtman M, Ghidelli-Disse S, Pflaumer H, Bosche M, Drewes G, Freiberg GM, Kurnick MD, Srikumaran M, Kempf DJ, Green SR, Ray PC, Read K, Wyatt P, Barry CE 3rd, Boshoff HI (2017) Essential but not vulnerable: indazole sulfonamides targeting inosine monophosphate dehydrogenase as potential leads against mycobacterium tuberculosis. ACS Infect Dis 3(1):18–33. https://doi.org/10.1021/acsinfecdis.6b00103

    Article  CAS  PubMed  Google Scholar 

  20. Pandurangan AP, Ascher DB, Thomas SE, Blundell TL (2017) Genomes, structural biology and drug discovery: combating the impacts of mutations in genetic disease and antibiotic resistance. Biochem Soc Trans 45(2):303–311. https://doi.org/10.1042/BST20160422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Albanaz ATS, Rodrigues CHM, Pires DEV, Ascher DB (2017) Combating mutations in genetic disease and drug resistance: understanding molecular mechanisms to guide drug design. Expert Opin Drug Discov 12(6):553–563. https://doi.org/10.1080/17460441.2017.1322579

    Article  PubMed  Google Scholar 

  22. White RR, Ponsford AH, Weekes MP, Rodrigues RB, Ascher DB, Mol M, Selkirk ME, Gygi SP, Sanderson CM, Artavanis-Tsakonas K (2016) Ubiquitin-dependent modification of skeletal muscle by the parasitic nematode, Trichinella spiralis. PLoS Pathog 12(11):e1005977. https://doi.org/10.1371/journal.ppat.1005977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Silvino AC, Costa GL, Araujo FC, Ascher DB, Pires DE, Fontes CJ, Carvalho LH, Brito CF, Sousa TN (2016) Variation in human cytochrome P-450 drug-metabolism genes: a gateway to the understanding of Plasmodium vivax relapses. PLoS One 11(7):e0160172. https://doi.org/10.1371/journal.pone.0160172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Phelan J, Coll F, McNerney R, Ascher DB, Pires DE, Furnham N, Coeck N, Hill-Cawthorne GA, Nair MB, Mallard K, Ramsay A, Campino S, Hibberd ML, Pain A, Rigouts L, Clark TG (2016) Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance. BMC Med 14:31. https://doi.org/10.1186/s12916-016-0575-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kano FS, Souza-Silva FA, Torres LM, Lima BA, Sousa TN, Alves JR, Rocha RS, Fontes CJ, Sanchez BA, Adams JH, Brito CF, Pires DE, Ascher DB, Sell AM, Carvalho LH (2016) The presence, persistence and functional properties of Plasmodium vivax duffy binding protein II antibodies are influenced by HLA class II allelic variants. PLoS Negl Trop Dis 10(12):e0005177. https://doi.org/10.1371/journal.pntd.0005177

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ascher DB, Wielens J, Nero TL, Doughty L, Morton CJ, Parker MW (2014) Potent hepatitis C inhibitors bind directly to NS5A and reduce its affinity for RNA. Sci Rep 4:4765. https://doi.org/10.1038/srep04765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hawkey J, Ascher DB, Judd LM, Wick RR, Kostoulias X, Cleland H, Spelman DW, Padiglione A, Peleg AY, Holt KE (2018) Evolution of carbapenem resistance in Acinetobacter baumannii during a prolonged infection. Microb Genom. https://doi.org/10.1099/mgen.0.000165

  28. Rodrigues CHM, Pires DEV, Ascher DB (2018) DynaMut: predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Res. https://doi.org/10.1093/nar/gky300

  29. Pires DE, Ascher DB (2017) mCSM-NA: predicting the effects of mutations on protein-nucleic acids interactions. Nucleic Acids Res 45:W241–W246. https://doi.org/10.1093/nar/gkx236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jubb HC, Higueruelo AP, Ochoa-Montano B, Pitt WR, Ascher DB, Blundell TL (2017) Arpeggio: a web server for calculating and visualising interatomic interactions in protein structures. J Mol Biol 429(3):365–371. https://doi.org/10.1016/j.jmb.2016.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pires DE, Blundell TL, Ascher DB (2016) mCSM-lig: quantifying the effects of mutations on protein-small molecule affinity in genetic disease and emergence of drug resistance. Sci Rep 6:29575. https://doi.org/10.1038/srep29575

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pires DE, Ascher DB (2016) CSM-lig: a web server for assessing and comparing protein-small molecule affinities. Nucleic Acids Res 44(W1):W557–W561. https://doi.org/10.1093/nar/gkw390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pires DE, Ascher DB (2016) mCSM-AB: a web server for predicting antibody-antigen affinity changes upon mutation with graph-based signatures. Nucleic Acids Res 44(W1):W469–W473. https://doi.org/10.1093/nar/gkw458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pires DE, Blundell TL, Ascher DB (2015) Platinum: a database of experimentally measured effects of mutations on structurally defined protein-ligand complexes. Nucleic Acids Res 43(Database issue):D387–D391. https://doi.org/10.1093/nar/gku966

    Article  CAS  PubMed  Google Scholar 

  35. Pires DE, Blundell TL, Ascher DB (2015) pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58(9):4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pires DE, Ascher DB, Blundell TL (2014) mCSM: predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics 30(3):335–342. https://doi.org/10.1093/bioinformatics/btt691

    Article  CAS  PubMed  Google Scholar 

  37. Pires DE, Ascher DB, Blundell TL (2014) DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res 42. (Web Server issue:W314–W319. https://doi.org/10.1093/nar/gku411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pandurangan AP, Ochoa-Montano B, Ascher DB, Blundell TL (2017) SDM: a server for predicting effects of mutations on protein stability. Nucleic Acids Res 45:W229–W235. https://doi.org/10.1093/nar/gkx439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  Google Scholar 

  40. Goncalves WR, Goncalves-Almeida VM, Arruda AL, Meira W Jr, da Silveira CH, Pires DE, de Melo-Minardi RC (2015) PDBest: a user-friendly platform for manipulating and enhancing protein structures. Bioinformatics 31(17):2894–2896. https://doi.org/10.1093/bioinformatics/btv223

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Australian Government Research Training Program Scholarship [to Y.M., M.K., C.H.M.R. and S.P.]; the Jack Brockhoff Foundation [JBF 4186, 2016 to D.B.A.]; a Newton Fund RCUK-CONFAP Grant awarded by The Medical Research Council (MRC) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) [MR/M026302/1 to D.B.A. and D.E.V.P.]; the National Health and Medical Research Council of Australia [APP1072476 to D.B.A.]; the Victorian Life Sciences Computation Initiative (VLSCI), an initiative of the Victorian Government, Australia, on its Facility hosted at the University of Melbourne [UOM0017]; the Instituto René Rachou (IRR/FIOCRUZ Minas), Brazil, and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) [to D.E.V.P.]; and the Department of Biochemistry and Molecular Biology, University of Melbourne [to D.B.A.].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas E. V. Pires .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pires, D.E.V. et al. (2019). Exploring Protein Supersecondary Structure Through Changes in Protein Folding, Stability, and Flexibility. In: Kister, A. (eds) Protein Supersecondary Structures. Methods in Molecular Biology, vol 1958. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9161-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9161-7_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9160-0

  • Online ISBN: 978-1-4939-9161-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics