Skip to main content

Structural Characterization of Membrane Protein Dimers

  • Protocol
  • First Online:
Protein Supersecondary Structures

Abstract

Membrane proteins are essential vessels for cell communication both with other cells and noncellular structures. They modulate environment responses and mediate a myriad of biological processes. Dimerization and multimerization processes have been shown to further increase the already high specificity of these processes. Due to their central role in various cell and organism functions, these multimers are often associated with health conditions, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and diabetes, among others.

Understanding the membrane protein dimers’ interface takes advantage of the specificity of the structure, for which we must pinpoint the most relevant interfacial residues, since they are extremely likely to be crucial for complex formation. Here, we describe step by step our own in silico protocol to characterize these residues, making use of known experimental structures. We detail the computational pipeline from data acquisition and pre-processing to feature extraction. A molecular dynamics simulation protocol to further study membrane dimer proteins and their interfaces is also illustrated.

António J. Preto and Pedro Matos-Filipe contributed equally with all other contributors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Israelachvili JN, Marcelja S, Horn RG (1980) Physical principles of membrane organization. Q Rev Biophys 13(2):121–200

    Article  CAS  PubMed  Google Scholar 

  2. Chiu ML 2012 Introduction to membrane proteins. Curr Protoc Protein Sci Chapter 29:Unit 29.1

    Google Scholar 

  3. Gromiha MM, Ou YY (2014) Bioinformatics approaches for functional annotation of membrane proteins. Brief Bioinform 15(2):155–168

    Article  CAS  PubMed  Google Scholar 

  4. Papadopoulos DK et al (2012) Dimer formation via the homeodomain is required for function and specificity of Sex combs reduced in Drosophila. Dev Biol 367(1):78–89

    Article  CAS  PubMed  Google Scholar 

  5. Damian M et al (2018) GHSR-D2R heteromerization modulates dopamine signaling through an effect on G protein conformation. In: Proceedings of the National Academy of Sciences

    Google Scholar 

  6. Moraes I et al (2014) Membrane protein structure determination - the next generation. Biochim Biophys Acta 1838(1 Pt A):78–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Almeida JG et al (2017) Membrane proteins structures: a review on computational modeling tools. Biochim Biophys Acta 1859(10):2021–2039

    Article  CAS  Google Scholar 

  8. Melo R et al (2016) A machine learning approach for hot-spot detection at protein-protein interfaces. Int J Mol Sci 17(8):1215

    Article  PubMed Central  CAS  Google Scholar 

  9. Moreira IS et al (2017) SpotOn: high accuracy identification of protein-protein interface hot-spots. Sci Rep 7(1):8007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Bastanlar Y, Ozuysal M (2014) Introduction to machine learning. Methods Mol Biol 1107:105–128

    Article  PubMed  Google Scholar 

  11. Cook CE et al (2016) The European Bioinformatics Institute in 2016: data growth and integration. Nucleic Acids Res 44(Database issue):D20–D26

    Article  CAS  PubMed  Google Scholar 

  12. Greene CS et al (2016) Big data bioinformatics. Methods (San Diego, CA) 111:1–2

    Article  CAS  Google Scholar 

  13. Gopinath RA, Burrus CS (1994) On upsampling, downsampling, and rational sampling rate filter banks. IEEE Trans Signal Process 42(4):812–824

    Article  Google Scholar 

  14. Browne MW (2000) Cross-validation methods. J Math Psychol 44(1):108–132

    Article  CAS  PubMed  Google Scholar 

  15. Schumacher M, Hollander N, Sauerbrei W (1997) Resampling and cross-validation techniques: a tool to reduce bias caused by model building? Stat Med 16(24):2813–2827

    Article  CAS  PubMed  Google Scholar 

  16. Min S, Lee B, Yoon S (2017) Deep learning in bioinformatics. Brief Bioinform 18(5):851–869

    PubMed  Google Scholar 

  17. Hajian-Tilaki K (2013) Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J Intern Med 4(2):627–635

    PubMed  PubMed Central  Google Scholar 

  18. McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267:585

    Article  CAS  PubMed  Google Scholar 

  19. Mori T et al (2016) Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms. Biochim Biophys Acta Biomembr 1858(7, Part B):1635–1651

    Article  CAS  Google Scholar 

  20. Neves RPP et al (2013) Parameters for molecular dynamics simulations of manganese-containing metalloproteins. J Chem Theory Comput 9(6):2718–2732

    Article  CAS  PubMed  Google Scholar 

  21. Coimbra JT et al (2014) Biomembrane simulations of 12 lipid types using the general Amber force field in a tensionless ensemble. J Biomol Struct Dyn 32(1):88–103

    Article  CAS  PubMed  Google Scholar 

  22. Sousa SF, Fernandes PA, Ramos MJ (2007) General performance of density functionals. J Phys Chem A 111(42):10439–10452

    Article  CAS  PubMed  Google Scholar 

  23. Comba P, Remenyi R (2003) Inorganic and bioinorganic molecular mechanics modeling—the problem of the force field parameterization. Coord Chem Rev 238–239:9–20

    Article  CAS  Google Scholar 

  24. Nerenberg PS, Head-Gordon T (2018) New developments in force fields for biomolecular simulations. Curr Opin Struct Biol 49:129–138

    Article  CAS  PubMed  Google Scholar 

  25. Lopes PEM, Guvench O, MacKerell AD (2015) Current status of protein force fields for molecular dynamics. Methods Mol Biol (Clifton, NJ) 1215:47–71

    Article  CAS  Google Scholar 

  26. Lyubartsev AP, Rabinovich AL (2016) Force field development for lipid membrane simulations. Biochim Biophys Acta 1858(10):2483–2497

    Article  CAS  PubMed  Google Scholar 

  27. Eichenberger AP et al (2011) GROMOS++ software for the analysis of biomolecular simulation trajectories. J Chem Theory Comput 7(10):3379–3390

    Article  CAS  PubMed  Google Scholar 

  28. Chandrasekhar I et al (2003) A consistent potential energy parameter set for lipids: dipalmitoylphosphatidylcholine as a benchmark of the GROMOS96 45A3 force field. Eur Biophys J 32(1):67–77

    CAS  PubMed  Google Scholar 

  29. Oostenbrink C et al (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25(13):1656–1676

    Article  CAS  PubMed  Google Scholar 

  30. Poger D, Van Gunsteren Wilfred F, Mark Alan E (2009) A new force field for simulating phosphatidylcholine bilayers. J Comput Chem 31(6):1117–1125

    Article  CAS  Google Scholar 

  31. Berger O, Edholm O, Jähnig F (1997) Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J 72(5):2002–2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chiu S-W et al (2009) An improved united atom force field for simulation of mixed lipid bilayers. J Phys Chem B 113(9):2748–2763

    Article  CAS  PubMed  Google Scholar 

  33. Jämbeck JP, Lyubartsev AP (2012) Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J Phys Chem B 116(10):3164–3179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Pastor RW, MacKerell AD (2011) Development of the CHARMM force field for lipids. J Phys Chem Lett 2(13):1526–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhu X, Lopes PEM, Mackerell AD (2012) Recent developments and applications of the CHARMM force fields. Wiley Interdiscip Rev Comput Mol Sci 2(1):167–185

    Article  CAS  PubMed  Google Scholar 

  36. Feller SE et al (1997) Molecular dynamics simulation of unsaturated lipid bilayers at low hydration: Parameterization and comparison with diffraction studies. Biophys J 73(5):2269–2279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Feller SE, MacKerell AD Jr (2000) An improved empirical potential energy function for molecular simulations of phospholipids. J Phys Chem B 104(31):7510–7515

    Article  CAS  Google Scholar 

  38. Klauda JB et al (2005) An ab initio study on the torsional surface of alkanes and its effect on molecular simulations of alkanes and a DPPC bilayer. J Phys Chem B 109(11):5300–5311

    Article  CAS  PubMed  Google Scholar 

  39. Klauda JB et al (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114(23):7830–7843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lim JB, Rogaski B, Klauda JB (2012) Update of the cholesterol force field parameters in CHARMM. J Phys Chem B 116(1):203–210

    Article  CAS  PubMed  Google Scholar 

  41. Wang J et al (2004) Development and testing of a general Amber force field. J Comput Chem 25(9):1157–1174

    Article  CAS  PubMed  Google Scholar 

  42. Dickson CJ et al (2012) GAFFlipid: a General Amber Force Field for the accurate molecular dynamics simulation of phospholipid. Soft Matter 8(37):9617–9627

    Article  CAS  Google Scholar 

  43. Ogata K, Nakamura S (2015) Improvement of parameters of the AMBER potential force field for phospholipids for description of thermal phase transitions. J Phys Chem B 119(30):9726–9739

    Article  CAS  PubMed  Google Scholar 

  44. Skjevik AA et al (2012) LIPID11: a modular framework for lipid simulations using amber. J Phys Chem B 116(36):11124–11136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dickson CJ et al (2014) Lipid14: the amber lipid force field. J Chem Theory Comput 10(2):865–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maciejewski A et al (2014) Refined OPLS all-atom force field for saturated phosphatidylcholine bilayers at full hydration. J Phys Chem B 118(17):4571–4581

    Article  CAS  PubMed  Google Scholar 

  47. Marrink SJ et al (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111(27):7812–7824

    Article  CAS  PubMed  Google Scholar 

  48. Marrink SJ, De Vries AH, Mark AE (2004) Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108(2):750–760

    Article  CAS  Google Scholar 

  49. Jämbeck JPM, Lyubartsev AP (2012) Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J Phys Chem B 116(10):3164–3179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Demerdash O, Wang LP, Head-Gordon T (2018) Advanced models for water simulations. Wiley Interdiscip Rev Comput Mol Sci 8(1):e1355

    Article  CAS  Google Scholar 

  51. Jorgensen WL et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  CAS  Google Scholar 

  52. Neria E, Fischer S, Karplus M (1996) Simulation of activation free energies in molecular systems. J Chem Phys 105(5):1902–1921

    Article  CAS  Google Scholar 

  53. Berweger CD, van Gunsteren WF, Müller-Plathe F (1995) Force field parametrization by weak coupling. Re-engineering SPC water. Chem Phys Lett 232(5–6):429–436

    Article  CAS  Google Scholar 

  54. Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91(24):6269–6271

    Article  CAS  Google Scholar 

  55. Wong-Ekkabut J, Karttunen M (2016) The good, the bad and the user in soft matter simulations. Biochim Biophys Acta Biomembr 1858(10):2529–2538

    Article  CAS  Google Scholar 

  56. Khalili-Araghi F et al (2013) Molecular dynamics simulations of membrane proteins under asymmetric ionic concentrations. J Gen Physiol 142(4):465–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. DeLano WL (2002) The PyMOL molecular graphics system. Delano Scientific, San Carlos, CA

    Google Scholar 

  58. Berman HM et al (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Case DA et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Brooks BR et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Christen M et al (2005) The GROMOS software for biomolecular simulation: GROMOS05. J Comput Chem 26(16):1719–1751

    Article  CAS  PubMed  Google Scholar 

  62. Das A, Ali SM (2018) Molecular dynamics simulation for the test of calibrated OPLS-AA force field for binary liquid mixture of tri-iso-amyl phosphate and n-dodecane. J Chem Phys 148(7):074502

    Article  PubMed  CAS  Google Scholar 

  63. Cock PJA et al (2009) Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25(11):1422–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Webb B, Sali A (2014) Protein structure modeling with MODELLER. Methods Mol Biol 1137:1–15

    Article  CAS  PubMed  Google Scholar 

  65. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  PubMed  Google Scholar 

  66. Cao DS et al (2013) PyDPI: freely available python package for chemoinformatics, bioinformatics, and chemogenomics studies. J Chem Inf Model 53(11):3086–3096

    Article  CAS  PubMed  Google Scholar 

  67. Chen Z et al (2018) iFeature: a python package and web server for features extraction and selection from protein and peptide sequences. Bioinformatics 34(14):2499–2502

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12):2577–2637

    Article  CAS  PubMed  Google Scholar 

  69. Leaver-Fay A et al (2011) ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol 487:545–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Altschul SF et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ghahremanpour MM et al (2014) MemBuilder: a web-based graphical interface to build heterogeneously mixed membrane bilayers for the GROMACS biomolecular simulation program. Bioinformatics 30(3):439–441

    Article  CAS  PubMed  Google Scholar 

  72. Jefferys E et al (2015) Alchembed: a computational method for incorporating multiple proteins into complex lipid geometries. J Chem Theory Comput 11(6):2743–2754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ruymgaart AP, Elber R (2012) Revisiting molecular dynamics on a CPU/GPU system: Water Kernel and SHAKE parallelization. J Chem Theory Comput 8(11):4624–4636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hess B, Bekker H, Berendsen HJC, Fraaije JG (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  75. Chen Y et al (2016) Structure of the STRA6 receptor for retinol uptake. Science 353(6302):aad8266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Eswar N et al (2006) Comparative protein structure modeling using modeller. Curr Protoc Bioinformatics Chapter 5:Unit 5.6

    Google Scholar 

  77. Miller S et al (1987) Interior and surface of monomeric proteins. J Mol Biol 196(3):641–656

    Article  CAS  PubMed  Google Scholar 

  78. Forst D et al (1998) Structure of the sucrose-specific porin ScrY from Salmonella typhimurium and its complex with sucrose. Nat Struct Biol 5:37

    Article  CAS  PubMed  Google Scholar 

  79. Chavent M, Duncan AL, Sansom MSP (2016) Molecular dynamics simulations of membrane proteins and their interactions: from nanoscale to mesoscale. Curr Opin Struct Biol 40:8–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Goñi FM (2014) The basic structure and dynamics of cell membranes: an update of the Singer–Nicolson model. Biochim Biophys Acta Biomembr 1838(6):1467–1476

    Article  CAS  Google Scholar 

  81. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Kulig W, Pasenkiewicz-Gierula M, Rog T (2015) Topologies, structures and parameter files for lipid simulations in GROMACS with the OPLS-aa force field: DPPC, POPC, DOPC, PEPC, and cholesterol. Data Brief 5:333–336

    Article  PubMed  PubMed Central  Google Scholar 

  83. Lee AG (2005) How lipids and proteins interact in a membrane: a molecular approach. Mol BioSyst 1(3):203–212

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Irina S. Moreira acknowledges support by the Fundação para a Ciência e a Tecnologia (FCT) Investigator programme—IF/00578/2014 (co-financed by European Social Fund and Programa Operacional Potencial Humano). This work was also financed by the European Regional Development Fund (ERDF), through the Centro 2020 Regional Operational Programme under project CENTRO-01-0145-FEDER-000008: BrainHealth 2020. We also acknowledge the grants POCI-01-0145-FEDER-031356 and PTDC/QUI-OUT/32243/2017 financed by national funds through the FCT/MCTES and co-financed by the European Regional Development Fund (ERDF), namely, under the following frameworks: “Projetos de Desenvolvimento e Implementação de Infraestruturas de Investigaçãoinseridas no RNIE”; “Programa Operacional Competitividade e Internacionalização—POCI”; “Programa Operacional Centro2020”; and/or State Budget.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina S. Moreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Preto, A.J., Matos-Filipe, P., Koukos, P.I., Renault, P., Sousa, S.F., Moreira, I.S. (2019). Structural Characterization of Membrane Protein Dimers. In: Kister, A. (eds) Protein Supersecondary Structures. Methods in Molecular Biology, vol 1958. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9161-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9161-7_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9160-0

  • Online ISBN: 978-1-4939-9161-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics