Skip to main content

Protodomains: Symmetry-Related Supersecondary Structures in Proteins and Self-Complementarity

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1958))

Abstract

We will consider in this chapter supersecondary structures (SSS) as a set of secondary structure elements (SSEs) found in protein domains. Some SSS arrangements/topologies have been consistently observed within known tertiary structural domains. We use them in the context of repeating supersecondary structures that self-assemble in a symmetric arrangement to form a domain. We call them protodomains (or protofolds). Protodomains are some of the most interesting and insightful SSSs. Within a given 3D protein domain/fold, recognizing such sets may give insights into a possible evolutionary process of duplication, fusion, and coevolution of these protodomains, pointing to possible original protogenes. On protein folding itself, pseudosymmetric domains may point to a “directed” assembly of pseudosymmetric protodomains, directed by the only fact that they are tethered together in a protein chain. On function, tertiary functional sites often occur at protodomain interfaces, as they often occur at domain-domain interfaces in quaternary arrangements.

First, we will briefly review some lessons learned from a previously published census of pseudosymmetry in protein domains (Myers-Turnbull, D. et al., J Mol Biol. 426:2255–2268, 2014) to introduce protodomains/protofolds. We will observe that the most abundant and diversified folds, or superfolds, in the currently known protein structure universe are indeed pseudosymmetric. Then, we will learn by example and select a few domain representatives of important pseudosymmetric folds and chief among them the immunoglobulin (Ig) fold and go over a pseudosymmetry supersecondary structure (protodomain) analysis in tertiary and quaternary structures. We will point to currently available software tools to help in identifying pseudosymmetry, delineating protodomains, and see how the study of pseudosymmetry and the underlying supersecondary structures can enrich a structural analysis. This should potentially help in protein engineering, especially in the development of biologics and immunoengineering.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Myers-Turnbull D et al (2014) Systematic detection of internal symmetry in proteins using CE-Symm. J Mol Biol 426:2255–2268

    Article  CAS  Google Scholar 

  2. Alewine C, Hassan R, Pastan I (2015) Advances in anticancer immunotoxin therapy. Oncologist 20:176–185

    Article  CAS  Google Scholar 

  3. Kochenderfer JN, Rosenberg SA (2013) Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat Rev Clin Oncol 10:267–276

    Article  CAS  Google Scholar 

  4. Chothia C, Lesk AM (1987) Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol 196:901–917

    Article  CAS  Google Scholar 

  5. Chothia C, Novotný J, Bruccoleri R, Karplus M (1985) Domain association in immunoglobulin molecules. The packing of variable domains. J Mol Biol 186:651–663

    Article  CAS  Google Scholar 

  6. Díaz-Ramos MC, Engel P, Bastos R (2011) Towards a comprehensive human cell-surface immunome database. Immunol Lett 134:183–187

    Article  Google Scholar 

  7. Naeim F, Nagesh Rao P, Song SX, Grody WW (2013) Atlas of hematopathology. Academic, New York, pp 25–46. https://doi.org/10.1016/B978-0-12-385183-3.00002-4

    Book  Google Scholar 

  8. McLachlan AD (1972) Gene duplication in carp muscle calcium binding protein. Nat New Biol 240:83–85

    Article  CAS  Google Scholar 

  9. Blundell TL, Sewell BT, McLachlan AD (1979) Four-fold structural repeat in the acid proteases. Biochim Biophys Acta 580:24–31

    Article  CAS  Google Scholar 

  10. McLachlan AD (1987) Gene duplication and the origin of repetitive protein structures. Cold Spring Harb Symp Quant Biol 52:411–420

    Article  CAS  Google Scholar 

  11. Hendrickson WA, Ward KB (1977) Pseudosymmetry in the structure of myohemerythrin. J Biol Chem 252:3012–3018

    CAS  PubMed  Google Scholar 

  12. Eck RV, Dayhoff MO (1966) Evolution of the structure of ferredoxin based on living relics of primitive amino acid sequences. Science 152:363–366

    Article  CAS  Google Scholar 

  13. Urbain J (1969) Evolution of immunoglobulins and ferredoxins and the occurrence of pseudosymmetrical sequences. Biochem Genet 3:249–269

    Article  CAS  Google Scholar 

  14. Barker WC, Ketcham LK, Dayhoff MO (1978) A comprehensive examination of protein sequences for evidence of internal gene duplication. J Mol Evol 10:265–281

    Article  CAS  Google Scholar 

  15. Delhaise P, Wuilmart C, Urbain J (1980) Relationships between alpha and beta secondary structures and amino-acid pseudosymmetrical arrangements. Eur J Biochem 105:553–564

    Article  CAS  Google Scholar 

  16. Lo Conte L et al (2000) SCOP: a structural classification of proteins database. Nucleic Acids Res 28:257–259

    Article  CAS  Google Scholar 

  17. Chandonia J-M, Fox NK, Brenner SE (2017) SCOPe: manual curation and artifact removal in the structural classification of proteins—extended database. J Mol Biol 429:348–355

    Article  CAS  Google Scholar 

  18. Sillitoe I, Dawson N, Thornton J, Orengo C (2015) The history of the CATH structural classification of protein domains. Biochimie 119:209–217

    Article  CAS  Google Scholar 

  19. Cheng H et al (2014) ECOD: an evolutionary classification of protein domains. PLoS Comput Biol 10:e1003926

    Article  Google Scholar 

  20. Goodsell DS, Olson AJ (2000) Structural symmetry and protein function. Annu Rev Biophys 29:105–153

    Article  CAS  Google Scholar 

  21. Levy ED, Pereira-Leal JB, Chothia C, Teichmann SA (2006) 3D complex: a structural classification of protein complexes. PLoS Comput Biol 2:e155

    Article  Google Scholar 

  22. Rose PW et al (2015) The RCSB Protein Data Bank: views of structural biology for basic and applied research and education. Nucleic Acids Res 43:D345–D356

    Article  CAS  Google Scholar 

  23. Young JY et al (2018) Worldwide Protein Data Bank biocuration supporting open access to high-quality 3D structural biology data. Database 2018

    Google Scholar 

  24. Levy ED, Boeri Erba E, Robinson CV, Teichmann SA (2008) Assembly reflects evolution of protein complexes. Nature 453:1262–1265

    Article  CAS  Google Scholar 

  25. Blaber M, Lee J, Longo L (2012) Emergence of symmetric protein architecture from a simple peptide motif: evolutionary models. Cell Mol Life Sci 69:3999–4006

    Article  CAS  Google Scholar 

  26. Andrade MA, Perez-Iratxeta C, Ponting CP (2001) Protein repeats: structures, functions, and evolution. J Struct Biol 134:117–131

    Article  CAS  Google Scholar 

  27. Abraham A-L, Pothier J, Rocha EPC (2009) Alternative to homo-oligomerisation: the creation of local symmetry in proteins by internal amplification. J Mol Biol 394:522–534

    Article  CAS  Google Scholar 

  28. Jones CP, Ferré-D’Amaré AR (2015) RNA quaternary structure and global symmetry. Trends Biochem Sci 40:211–220

    Article  CAS  Google Scholar 

  29. Bashan A et al (2003) Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression. Mol Cell 11:91–102

    Article  CAS  Google Scholar 

  30. Lehn J-M (2002) Toward self-organization and complex matter. Science 295:2400–2403

    Article  CAS  Google Scholar 

  31. Lehn J-M (2013) Perspectives in chemistry—steps towards complex matter. Angew Chem Int Ed Engl 52:2836–2850

    Article  CAS  Google Scholar 

  32. Gutmanas A et al (2014) PDBe: Protein Data Bank in Europe. Nucleic Acids Res 42:D285–D291

    Article  CAS  Google Scholar 

  33. Kinjo AR et al (2017) Protein Data Bank Japan (PDBj): updated user interfaces, resource description framework, analysis tools for large structures. Nucleic Acids Res 45:D282–D288

    Article  CAS  Google Scholar 

  34. Marchler-Bauer A et al (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43:D222–D226

    Article  CAS  Google Scholar 

  35. Madej T et al (2014) MMDB and VAST+: tracking structural similarities between macromolecular complexes. Nucleic Acids Res 42:D297–D303

    Article  CAS  Google Scholar 

  36. Wang Y, Geer LY, Chappey C, Kans JA, Bryant SH (2000) Cn3D: sequence and structure views for Entrez. Trends Biochem Sci 25:300–302

    Article  CAS  Google Scholar 

  37. Madej T et al (2012) MMDB: 3D structures and macromolecular interactions. Nucleic Acids Res 40:D461–D464

    Article  CAS  Google Scholar 

  38. Kim C, Basner J, Lee B (2010) Detecting internally symmetric protein structures. BMC Bioinformatics 11:303

    Article  Google Scholar 

  39. Tai C-H, Paul R, Dukka KC, Shilling JD, Lee B (2014) SymD webserver: a platform for detecting internally symmetric protein structures. Nucleic Acids Res 42:W296–W300

    Article  CAS  Google Scholar 

  40. Wang J, Youkharibache P, Zhang D, Lanczycki CJ, Geer RC, Madej T, Phan L et al (2018) iCn3D, a web-based 3D viewer for the visualization of biomolecular structure and sequence annotation. bioRxiv. https://doi.org/10.1101/501692

  41. Jmol: an open-source browser-based HTML5 viewer and stand-alone Java viewer for chemical structures in 3D. http://jmol.sourceforge.net/

  42. Rose AS, Hildebrand PW (2015) NGL Viewer: a web application for molecular visualization. Nucleic Acids Res 43:W576–W579

    Article  CAS  Google Scholar 

  43. Stivala A, Wybrow M, Wirth A, Whisstock JC, Stuckey PJ (2011) Automatic generation of protein structure cartoons with Pro-origami. Bioinformatics 27:3315–3316

    Article  CAS  Google Scholar 

  44. Youkharibache P (2017) Twelve elements of visualization and analysis for tertiary and quaternary structure of biological molecules. bioRxiv 153528. 10.1101/153528

    Google Scholar 

  45. Mura C, Randolph PS, Patterson J, Cozen AE (2013) Archaeal and eukaryotic homologs of Hfq: A structural and evolutionary perspective on Sm function. RNA Biol 10:636–651

    Article  CAS  Google Scholar 

  46. Youkharibache P et al (2019) The small β-barrel domain: a survey-based structural analysis. Structure 27 (1): 6–26. https://doi.org/10.1016/j.str.2018.09.012

    Google Scholar 

  47. Serganov A, Huang L, Patel DJ (2009) Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch. Nature 458:233–237

    Article  CAS  Google Scholar 

  48. Patikoglou GA et al (1999) TATA element recognition by the TATA box-binding protein has been conserved throughout evolution. Genes Dev 13:3217–3230

    Article  CAS  Google Scholar 

  49. Stanfield RL, Dooley H, Flajnik MF, Wilson IA (2004) Crystal structure of a shark single-domain antibody V region in complex with lysozyme. Science 305:1770–1773

    Article  CAS  Google Scholar 

  50. Streltsov VA et al (2004) Structural evidence for evolution of shark Ig new antigen receptor variable domain antibodies from a cell-surface receptor. Proc Natl Acad Sci U S A 101:12444–12449

    Article  CAS  Google Scholar 

  51. Feige MJ et al (2014) The structural analysis of shark IgNAR antibodies reveals evolutionary principles of immunoglobulins. Proc Natl Acad Sci U S A 111:8155–8160

    Article  CAS  Google Scholar 

  52. Kabat EA, Wu TT, Reid-Miller M, Perry HM, Gottesman KS (1987) Sequences of proteins of lmmunologlcal interest, 4th ed. National Institutes of Health, Bethesda

    Google Scholar 

  53. Lefranc M-P et al (2003) IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev Comp Immunol 27:55–77

    Article  CAS  Google Scholar 

  54. Zhang Y-F, Ho M (2017) Humanization of rabbit monoclonal antibodies via grafting combined Kabat/IMGT/Paratome complementarity-determining regions: Rationale and examples. MAbs 9:419–429

    Article  CAS  Google Scholar 

  55. Siupka P, Hamming OT, Kang L, Gad HH, Hartmann R (2015) A conserved sugar bridge connected to the WSXWS motif has an important role for transport of IL-21R to the plasma membrane. Genes Immun 16:405–413

    Article  CAS  Google Scholar 

  56. Hamming OJ et al (2012) Crystal structure of interleukin-21 receptor (IL-21R) bound to IL-21 reveals that sugar chain interacting with WSXWS motif is integral part of IL-21R. J Biol Chem 287:9454–9460

    Article  CAS  Google Scholar 

  57. Baumgartner JW, Wells CA, Chen CM, Waters MJ (1994) The role of the WSXWS equivalent motif in growth hormone receptor function. J Biol Chem 269:29094–29101

    CAS  PubMed  Google Scholar 

  58. Forrest L, Structural R (2015) Symmetry in membrane proteins. Annu Rev Biophys 44:311–337

    Article  CAS  Google Scholar 

  59. Forrest LR (2013) Structural biology. (Pseudo-)symmetrical transport. Science 339:399–401

    Article  CAS  Google Scholar 

  60. Feng L, Frommer WB (2015) Structure and function of SemiSWEET and SWEET sugar transporters. Trends Biochem Sci 40:480–486

    Article  CAS  Google Scholar 

  61. Hu Y-B et al (2016) Phylogenetic evidence for a fusion of archaeal and bacterial SemiSWEETs to form eukaryotic SWEETs and identification of SWEET hexose transporters in the amphibian chytrid pathogen Batrachochytrium dendrobatidis. FASEB J 30:3644–3654

    Article  CAS  Google Scholar 

  62. Choi S, Jeon J, Yang J-S, Kim S (2008) Common occurrence of internal repeat symmetry in membrane proteins. Proteins 71:68–80

    Article  CAS  Google Scholar 

  63. Palczewski K et al (2000) Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289:739–745

    Article  CAS  Google Scholar 

  64. Li J, Edwards PC, Burghammer M, Villa C, Schertler GFX (2004) Structure of bovine rhodopsin in a trigonal crystal form. J Mol Biol 343:1409–1438

    Article  CAS  Google Scholar 

  65. Wu H et al (2014) Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 344:58–64

    Article  CAS  Google Scholar 

  66. Christopher JA et al (2015) Fragment and structure-based drug discovery for a class C GPCR: discovery of the mGlu5 negative allosteric modulator HTL14242 (3-Chloro-5-[6-(5-fluoropyridin-2-yl)pyrimidin-4-yl]benzonitrile). J Med Chem 58:6653–6664

    Article  CAS  Google Scholar 

  67. Youkharibache P, Tran A, Abrol R (2018) 7-Transmembrane Helical (7TMH) Proteins: Pseudo-Symmetry and Conformational Plasticity. bioRxiv. https://doi.org/10.1101/465302

    Google Scholar 

  68. Stamm M, Forrest LR (2015) Structure alignment of membrane proteins: comparison of available tools and a consensus strategy. Proteins 83(9):1720–1732

    Article  CAS  Google Scholar 

  69. Korkmaz S et al (2017) Quaternary structure evaluation tool for protein assemblies. bioRxiv 224196. https://doi.org/10.1101/224196

  70. Kettle SFA (2007) Symmetry and structure: readable group theory for chemists. Wiley. https://market.android.com/details?id=book-KoywQgAACAAJ

  71. Liu Y, Eisenberg D (2002) 3D domain swapping: as domains continue to swap. Protein Sci 11:1285–1299

    Article  CAS  Google Scholar 

  72. Alva V, Söding J, Lupas AN (2015) A vocabulary of ancient peptides at the origin of folded proteins. elife 4:e09410

    Article  Google Scholar 

  73. Petrey D, Fischer M, Honig B (2009) Structural relationships among proteins with different global topologies and their implications for function annotation strategies. Proc Natl Acad Sci U S A 106:17377–17382

    Article  CAS  Google Scholar 

  74. Kellman ME (1996) Symmetry in chemistry from the hydrogen atom to proteins. Proc Natl Acad Sci U S A 93:14287–14294

    Article  CAS  Google Scholar 

  75. Leahy DJ, Axel R, Hendrickson WA (1992) Crystal structure of a soluble form of the human T cell coreceptor CD8 at 2.6 A resolution. Cell 68:1145–1162

    Article  CAS  Google Scholar 

  76. Chang H-C et al (2005) Structural and mutational analyses of a CD8alphabeta heterodimer and comparison with the CD8alphaalpha homodimer. Immunity 23:661–671

    Article  CAS  Google Scholar 

  77. Liu Y, Li X, Qi J, Zhang N, Xia C (2016) The structural basis of chicken, swine and bovine CD8αα dimers provides insight into the co-evolution with MHC I in endotherm species. Sci Rep 6:24788

    Article  CAS  Google Scholar 

  78. Zak KM et al (2015) Structure of the complex of human programmed death 1, PD-1, and its ligand PD-L1. Structure 23:2341–2348

    Article  CAS  Google Scholar 

  79. Gorman J et al (2016) Structures of HIV-1 Env V1V2 with broadly neutralizing antibodies reveal commonalities that enable vaccine design. Nat Struct Mol Biol 23:81–90

    Article  CAS  Google Scholar 

  80. Prabakaran P et al (2008) Structure of an isolated unglycosylated antibody C(H)2 domain. Acta Crystallogr D Biol Crystallogr 64:1062–1067

    Article  CAS  Google Scholar 

  81. Oganesyan V et al (2014) Structural insights into neonatal Fc receptor-based recycling mechanisms. J Biol Chem 289:7812–7824

    Article  CAS  Google Scholar 

  82. Bravo J, Staunton D, Heath JK, Jones EY (1998) Crystal structure of a cytokine-binding region of gp130. EMBO J 17:1665–1674

    Article  CAS  Google Scholar 

  83. de Vos AM, Ultsch M, Kossiakoff AA (1992) Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 255:306–312

    Article  Google Scholar 

  84. Stauber DJ, Debler EW, Horton PA, Smith KA, Wilson IA (2006) Crystal structure of the IL-2 signaling complex: paradigm for a heterotrimeric cytokine receptor. Proc Natl Acad Sci U S A 103:2788–2793

    Article  CAS  Google Scholar 

  85. Tao Y et al (2015) Structure of a eukaryotic SWEET transporter in a homotrimeric complex. Nature 527:259–263

    Article  CAS  Google Scholar 

  86. Xu Y et al (2014) Structures of bacterial homologues of SWEET transporters in two distinct conformations. Nature 515:448–452

    Article  CAS  Google Scholar 

  87. Vrentas C et al (2015) Hfqs in Bacillus anthracis: role of protein sequence variation in the structure and function of proteins in the Hfq family. Protein Sci 24:1808–1819

    Article  CAS  Google Scholar 

  88. Cho Y, Gorina S, Jeffrey PD, Pavletich NP (1994) Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265:346–355

    Article  CAS  Google Scholar 

  89. Lu X et al (2008) The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure. Nat Struct Mol Biol 15:1122–1124

    Article  CAS  Google Scholar 

  90. Pettersen EF et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank Jiyao Wang at NCBI who developed most of iCn3D software and has been working very hard to release the new version of the software to allow some key visualization on time for this paper and all members of the NCBI Structure group headed by Steve Bryant who participated; Peter Rose at SDSC who guided me through RCSB’s symmetry categorizations in quaternary structure and who developed the symmetry visualization in Jmol, used at RCSB and within CE-symm; and Spencer Bliven and Aleix Latifa who developed CE-symm further to allow multilevel symmetry determination, both at the quaternary and tertiary levels simultaneously. A special thought for Guido Capitani who supported that last effort and who passed away last year, far too young, before we had time to join forces on tertiary/quaternary structural analysis. I miss him both at a personal level and scientifically. Thank you to Stella Veretnik for discussions over the years on small beta barrels. Thank you to Phil Bourne who gave me the opportunity to resume work on pseudosymmetry at the NIH while initiated long ago at Columbia University with Cy Levinthal, Barry Honig, and Wayne Hendrickson. Thank you to Tom Misteli at the National Cancer Institute for his support, giving me the opportunity to pursue applications of these concepts in the aim of developing rational design methods for immunotherapy. Finally, I would like to thank Mitchell Ho at the NCI for introducing me to Shark Immunoglobulins.

This research was supported in part by the Intramural Research Program of the National Cancer Institute and the National Library of Medicine, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Youkharibache .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Figs. S1-S6

Protodomains: Symmetry related SuperSecondary Protein Structures and self-complementarity - Supplement Figures S1-S6 (PDF 2452 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Youkharibache, P. (2019). Protodomains: Symmetry-Related Supersecondary Structures in Proteins and Self-Complementarity. In: Kister, A. (eds) Protein Supersecondary Structures. Methods in Molecular Biology, vol 1958. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9161-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9161-7_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9160-0

  • Online ISBN: 978-1-4939-9161-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics