Skip to main content

Methods to Characterize Protein Interactions with β-Arrestin In Cellulo

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1957))

Abstract

β-Arrestins 1 and 2 (β-arr1 and β-arr2) are ubiquitous proteins with common and distinct functions. They were initially identified as proteins recruited to stimulated G protein-coupled receptors (GPCRs), regulating their desensitization and internalization. The discovery that β-arrs could also interact with more than 400 non-GPCR protein partners brought to light their central roles as multifunctional scaffold proteins regulating multiple signalling pathways from the plasma membrane to the nucleus, downstream of GPCRs or independently from these receptors. Through the regulation of the activities and subcellular localization of their binding partners, β-arrs control various cell processes such as proliferation, cytoskeletal rearrangement, cell motility, and apoptosis. Thus, the identification of β-arrs binding partners and the characterization of their mode of interaction in cells are central to the understanding of their function. Here we provide methods to explore the molecular interaction of β-arrs with other proteins in cellulo.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Enslen H, Lima-Fernandes E, Scott MG (2014) Arrestins as regulatory hubs in cancer signalling pathways. Handb Exp Pharmacol 219:405–425

    Article  CAS  PubMed  Google Scholar 

  2. Lefkowitz RJ (2013) A brief history of G-protein coupled receptors (Nobel lecture). Angew Chem Int Ed Engl 52(25):6366–6378

    Article  CAS  PubMed  Google Scholar 

  3. Rajagopal S, Shenoy SK (2018) GPCR desensitization: acute and prolonged phases. Cell Signal 41:9–16

    Article  CAS  PubMed  Google Scholar 

  4. Laporte SA, Oakley RH, Zhang J, Holt JA, Ferguson SS, Caron MG, Barak LS (1999) The β2-adrenergic receptor/β-arrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc Natl Acad Sci U S A 96(7):3712–3717

    Google Scholar 

  5. Pavlos NJ, Friedman PA (2017) GPCR signaling and trafficking: the long and short of it. Trends Endocrinol Metab 28(3):213–226

    Article  CAS  PubMed  Google Scholar 

  6. DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK (2007) β-arrestins and cell signaling. Annu Rev Physiol 69:483–510

    Google Scholar 

  7. Gurevich EV, Gurevich VV (2006) Arrestins: ubiquitous regulators of cellular signaling pathways. Genome Biol 7(9):236

    Article  PubMed  PubMed Central  Google Scholar 

  8. Xiao K, McClatchy DB, Shukla AK, Zhao Y, Chen M, Shenoy SK, Yates JR 3rd, Lefkowitz RJ (2007) Functional specialization of β-arrestin interactions revealed by proteomic analysis. Proc Natl Acad Sci U S A 104(29):12011–12016

    Google Scholar 

  9. Jean-Charles PY, Zhang L, Wu JH, Han SO, Brian L, Freedman NJ, Shenoy SK (2016) Ubiquitin-specific protease 20 regulates the reciprocal functions of β-arrestin2 in toll-like receptor 4-promoted nuclear factor kappaB (NFkappaB) activation. J Biol Chem 291(14):7450–7464

    Google Scholar 

  10. Klenk C, Vetter T, Zurn A, Vilardaga JP, Friedman PA, Wang B, Lohse MJ (2010) Formation of a ternary complex among NHERF1, β-arrestin, and parathyroid hormone receptor. J Biol Chem 285(39):30355–30362

    Google Scholar 

  11. Kook S, Zhan X, Kaoud TS, Dalby KN, Gurevich VV, Gurevich EV (2013) Arrestin-3 binds c-Jun N-terminal kinase 1 (JNK1) and JNK2 and facilitates the activation of these ubiquitous JNK isoforms in cells via scaffolding. J Biol Chem 288(52):37332–37342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lima-Fernandes E, Enslen H, Camand E, Kotelevets L, Boularan C, Achour L, Benmerah A, Gibson LC, Baillie GS, Pitcher JA, Chastre E, Etienne-Manneville S, Marullo S, Scott MG (2011) Distinct functional outputs of PTEN signalling are controlled by dynamic association with β-arrestins. EMBO J 30(13):2557–2568

    Google Scholar 

  13. Nishida M, Ogushi M, Suda R, Toyotaka M, Saiki S, Kitajima N, Nakaya M, Kim KM, Ide T, Sato Y, Inoue K, Kurose H (2011) Heterologous down-regulation of angiotensin type 1 receptors by purinergic P2Y2 receptor stimulation through S-nitrosylation of NF-kappaB. Proc Natl Acad Sci U S A 108(16):6662–6667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thathiah A, Horre K, Snellinx A, Vandewyer E, Huang Y, Ciesielska M, De Kloe G, Munck S, De Strooper B (2013) β-arrestin 2 regulates Ab generation and γ-secretase activity in Alzheimer’s disease. Nat Med 19(1):43–49

    Google Scholar 

  15. Trefier A, Musnier A, Landomiel F, Bourquard T, Boulo T, Ayoub MA, Leon K, Bruneau G, Chevalier M, Durand G, Blache MC, Inoue A, Fontaine J, Gauthier C, Tesseraud S, Reiter E, Poupon A, Crepieux P (2018) G protein-dependent signaling triggers a β-arrestin-scaffolded p70S6K/rpS6 module that controls 5’TOP mRNA translation. FASEB J 32(3):1154–1169

    Google Scholar 

  16. Crepieux P, Poupon A, Langonne-Gallay N, Reiter E, Delgado J, Schaefer MH, Bourquard T, Serrano L, Kiel C (2017) A comprehensive view of the β-Arrestinome. Front Endocrinol (Lausanne) 8:32

    Google Scholar 

  17. Peterson YK, Luttrell LM (2017) The diverse roles of Arrestin scaffolds in G protein-coupled receptor signaling. Pharmacol Rev 69(3):256–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. DeFea KA (2007) Stop that cell! β-arrestin-dependent chemotaxis: a tale of localized actin assembly and receptor desensitization. Annu Rev Physiol 69:535–560

    Google Scholar 

  19. Sharma D, Parameswaran N (2015) Multifaceted role of β-arrestins in inflammation and disease. Genes Immun 16(8):576

    Google Scholar 

  20. Porter-Stransky KA, Weinshenker D (2017) Arresting the development of addiction: the role of β-Arrestin 2 in drug abuse. J Pharmacol Exp Ther 361(3):341–348

    Google Scholar 

  21. Stephens DJ, Banting G (2000) The use of yeast two-hybrid screens in studies of protein:protein interactions involved in trafficking. Traffic 1(10):763–768

    Article  CAS  PubMed  Google Scholar 

  22. Scott MG, Pierotti V, Storez H, Lindberg E, Thuret A, Muntaner O, Labbe-Jullie C, Pitcher JA, Marullo S (2006) Cooperative regulation of extracellular signal-regulated kinase activation and cell shape change by filamin a and β-arrestins. Mol Cell Biol 26(9):3432–3445

    Google Scholar 

  23. Beaulieu JM, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG (2005) An Akt/β-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122(2):261–273

    Google Scholar 

  24. Macia E, Partisani M, Paleotti O, Luton F, Franco M (2012) Arf6 negatively controls the rapid recycling of the β2-adrenergic receptor. J Cell Sci 125(Pt 17):4026–4035

    Google Scholar 

  25. Marullo S, Bouvier M (2007) Resonance energy transfer approaches in molecular pharmacology and beyond. Trends Pharmacol Sci 28(8):362–365

    Article  CAS  PubMed  Google Scholar 

  26. Breton B, Sauvageau E, Zhou J, Bonin H, Le Gouill C, Bouvier M (2010) Multiplexing of multicolor bioluminescence resonance energy transfer. Biophys J 99(12):4037–4046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Coriano C, Powell E, Xu W (2016) Monitoring ligand-activated protein-protein interactions using bioluminescent resonance energy transfer (BRET) assay. Methods Mol Biol 1473:3–15

    Article  PubMed  Google Scholar 

  28. Pfleger KD, Eidne KA (2006) Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). Nat Methods 3(3):165–174

    Article  CAS  PubMed  Google Scholar 

  29. Beautrait A, Paradis JS, Zimmerman B, Giubilaro J, Nikolajev L, Armando S, Kobayashi H, Yamani L, Namkung Y, Heydenreich FM, Khoury E, Audet M, Roux PP, Veprintsev DB, Laporte SA, Bouvier M (2017) A new inhibitor of the β-arrestin/AP2 endocytic complex reveals interplay between GPCR internalization and signalling. Nat Commun 8:15054

    Google Scholar 

  30. Breitman M, Kook S, Gimenez LE, Lizama BN, Palazzo MC, Gurevich EV, Gurevich VV (2012) Silent scaffolds: inhibition of c-Jun N-terminal kinase 3 activity in cell by dominant-negative arrestin-3 mutant. J Biol Chem 287(23):19653–19664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Paradis JS, Ly S, Blondel-Tepaz E, Galan JA, Beautrait A, Scott MG, Enslen H, Marullo S, Roux PP, Bouvier M (2015) Receptor sequestration in response to β-arrestin-2 phosphorylation by ERK1/2 governs steady-state levels of GPCR cell-surface expression. Proc Natl Acad Sci U S A 112(37):E5160–E5168

    Google Scholar 

  32. Loening AM, Fenn TD, Wu AM, Gambhir SS (2006) Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output. Protein Eng Des Sel 19(9):391–400

    Article  CAS  PubMed  Google Scholar 

  33. Van Criekinge W, Beyaert R (1999) Yeast two-hybrid: state of the art. Biol Proced Online 2(1):1–38

    Article  PubMed  PubMed Central  Google Scholar 

  34. Scott MG, Le Rouzic E, Perianin A, Pierotti V, Enslen H, Benichou S, Marullo S, Benmerah A (2002) Differential nucleocytoplasmic shuttling of b-arrestins. Characterization of a leucine-rich nuclear export signal in β-arrestin2. J Biol Chem 277(40):37693–37701

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Enslen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alexander, R.A., Lot, I., Enslen, H. (2019). Methods to Characterize Protein Interactions with β-Arrestin In Cellulo. In: Scott, M., Laporte, S. (eds) Beta-Arrestins. Methods in Molecular Biology, vol 1957. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9158-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9158-7_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9157-0

  • Online ISBN: 978-1-4939-9158-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics