Skip to main content

Measuring Recruitment of β-Arrestin to G Protein-Coupled Heterodimers Using Bioluminescence Resonance Energy Transfer

  • Protocol
  • First Online:
Beta-Arrestins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1957))

Abstract

Initially identified as monomers, G protein-coupled receptors (GPCRs) can also form functional dimers that act as distinct signalling hubs for the integration of cellular signalling. We previously found that the angiotensin II (Ang II) type 1 receptor (AT1R) and the prostaglandin F2α (PGF2α) receptor (FP), both important in the control of smooth muscle contractility, form such a functional heterodimeric complex in HEK 293 and vascular smooth muscle cells (Goupil et al., J Biol Chem 290:3137–3148, 2015; Sleno et al., J Biol Chem 292:12139–12152, 2017). In addition to canonical G protein coupling, GPCRs recruit and engage β-arrestin-dependent pathways. Using BRET-based biosensors, we demonstrate how to assess recruitment of β-arrestin-1 and -2 to AT1R and the AT1R/FP dimer in response to Ang II. Surprisingly, β-arrestin-1 and -2 were recruited to the dimer, in response to PGF2α as well, even though FP alone cannot recruit either β-arrestin-1 and -2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goupil E, Fillion D, Clement S, Luo X, Devost D, Sleno R, Petrin D, Saragovi HU, Thorin E, Laporte SA, Hébert TE (2015) Angiotensin II type I and prostaglandin F2α receptors cooperatively modulate signaling in vascular smooth muscle cells. J Biol Chem 290:3137–3148

    Article  CAS  PubMed  Google Scholar 

  2. Sleno R, Devost D, Petrin D, Zhang A, Bourque K, Shinjo Y, Aoki J, Inoue A, Hebert TE (2017) Conformational biosensors reveal allosteric interactions between heterodimeric AT1 angiotensin and prostaglandin F2α receptors. J Biol Chem 292:12139–12152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Franco R, Martinez-Pinilla E, Lanciego JL, Navarro G (2016) Basic pharmacological and structural evidence for class A G-protein-coupled receptor heterodimerization. Front Pharmacol 7:76

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ferre S, Casado V, Devi LA, Filizola M, Jockers R, Lohse MJ, Milligan G, Pin JP, Guitart X (2014) G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacol Rev 66:413–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gomes I, Ayoub MA, Fujita W, Jaeger WC, Pfleger KD, Devi LA (2016) G protein-coupled receptor heteromers. Annu Rev Pharmacol Toxicol 56:403–425

    Article  CAS  PubMed  Google Scholar 

  6. Smith NJ, Milligan G (2010) Allostery at G protein-coupled receptor homo- and heteromers: uncharted pharmacological landscapes. Pharmacol Rev 62(4):701–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kleinau G, Muller A, Biebermann H (2016) Oligomerization of GPCRs involved in endocrine regulation. J Mol Endocrinol 57(1):R59–R80

    Article  CAS  PubMed  Google Scholar 

  8. Bouvier M, Hebert TE (2014) Rebuttal from Michel Bouvier and Terence E. Hebert. J Physiol 592(12):2447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bouvier M, Hebert TE (2014) CrossTalk proposal: weighing the evidence for Class A GPCR dimers, the evidence favours dimers. J Physiol 592(12):2439–2441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lambert NA, Javitch JA (2014) CrossTalk opposing view: Weighing the evidence for class A GPCR dimers, the jury is still out. J Physiol 592(12):2443–2445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lambert NA, Javitch JA (2014) Rebuttal from Nevin A. Lambert and Jonathan A. Javitch. J Physiol 592(12):2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bosma R, Moritani R, Leurs R, Vischer HF (2016) BRET-based β-arrestin2 recruitment to the histamine H1 receptor for investigating antihistamine binding kinetics. Pharmacol Res 111:679–687

    Article  CAS  PubMed  Google Scholar 

  13. Bonneterre J, Montpas N, Boularan C, Gales C, Heveker N (2016) Analysis of arrestin recruitment to chemokine receptors by bioluminescence resonance energy transfer. Methods Enzymol 570:131–153

    Article  CAS  PubMed  Google Scholar 

  14. Donthamsetti P, Quejada JR, Javitch JA, Gurevich VV, Lambert NA (2015) Using bioluminescence resonance energy transfer (BRET) to characterize agonist-induced arrestin recruitment to modified and unmodified G protein-coupled receptors. Curr Protoc Pharmacol 70(2):14 11–14 14

    Google Scholar 

  15. Namkung Y, Le Gouill C, Lukashova V, Kobayashi H, Hogue M, Khoury E, Song M, Bouvier M, Laporte SA (2016) Monitoring G protein-coupled receptor and β-arrestin trafficking in live cells using enhanced bystander BRET. Nat Commun 7:12178

    Article  PubMed  PubMed Central  Google Scholar 

  16. Quoyer J, Janz JM, Luo J, Ren Y, Armando S, Lukashova V, Benovic JL, Carlson KE, Hunt SW 3rd, Bouvier M (2013) Pepducin targeting the C-X-C chemokine receptor type 4 acts as a biased agonist favoring activation of the inhibitory G protein. Proc Natl Acad Sci U S A 110:E5088–E5097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zimmerman B, Beautrait A, Aguila B, Charles R, Escher E, Claing A, Bouvier M, Laporte SA (2012) Differential β-arrestin-dependent conformational signaling and cellular responses revealed by angiotensin analogs. Sci Signal 5:ra33

    Article  PubMed  Google Scholar 

  18. Leonard AP, Appleton KM, Luttrell LM, Peterson YK (2013) A high-content, live-cell, and real-time approach to the quantitation of ligand-induced β-Arrestin2 and Class A/Class B GPCR mobilization. Microsc Microanal 19(1):150–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the Canadian Institutes for Health Research and the Ferring Foundation. We also thank Dr. Nicolas Audet (McGill University, Montréal) for useful discussions regarding statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terence E. Hébert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fillion, D., Devost, D., Hébert, T.E. (2019). Measuring Recruitment of β-Arrestin to G Protein-Coupled Heterodimers Using Bioluminescence Resonance Energy Transfer. In: Scott, M., Laporte, S. (eds) Beta-Arrestins. Methods in Molecular Biology, vol 1957. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9158-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9158-7_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9157-0

  • Online ISBN: 978-1-4939-9158-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics