Skip to main content

Sulfhydryl Labeling as a Tool to Investigate the Topology of Membrane Proteins Involved in Lipopolysaccharide Biosynthesis

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1954))

Abstract

Establishing the topology of membrane proteins, especially when their tridimensional structures are unavailable, is critical to identify functional regions, delimit the protein orientation in the membrane, the number of transmembrane segments, and the position of critical amino acids (whether exposed to the solvent or embedded in the lipid bilayer). Elucidating the topology of bacterial integral membrane proteins typically involves the construction of deletion-fusions whereby regions of the protein are fused to reporters. Although these methods have several advantages, they are also artifact prone. In contrast, methods based on single amino acid substitutions preserve the native protein intact. We describe here an assay to analyze the topology of membrane proteins involved in the biogenesis of bacterial glycoconjugates, which is based on the accessibility of cysteine substitutions at various places in the protein under in vivo and in vitro conditions. Cysteine residues are detected with polyethylene glycol-maleimide (PEG-Mal). This procedure can be applied to crude bacterial cell extracts and does not require protein purification.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Raetz RH, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700

    Article  CAS  Google Scholar 

  2. Whitfield C, Trent MS (2014) Biosynthesis and export of bacterial lipopolysaccharides. Annu Rev Biochem 83:99–128

    Article  CAS  Google Scholar 

  3. Samuel S, Reeves P (2003) Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly. Carbohydr Res 338:2503–2519

    Article  CAS  Google Scholar 

  4. Raetz CR, Reynolds CM, Trent MS et al (2007) Lipid A modification systems in gram-negative bacteria. Annu Rev Biochem 76:295–329

    Article  CAS  Google Scholar 

  5. Valvano MA (2011) Common themes in glycoconjugate assembly using the biogenesis of O-antigen lipopolysaccharide as a model system. Biochemistry-Moscow 76:729–735

    Article  CAS  Google Scholar 

  6. Needham BD, Trent MS (2013) Fortifying the barrier: the impact of lipid A remodelling on bacterial pathogenesis. Nat Rev Microbiol 11:467–481

    Article  CAS  Google Scholar 

  7. Furlong SE, Ford A, Albarnez-Rodriguez L et al (2015) Topological analysis of the Escherichia coli WcaJ protein reveals a new conserved configuration for the polyisoprenyl-phosphate hexose-1-phosphate transferase family. Sci Rep 5:9178

    Article  Google Scholar 

  8. Lukose V, Walvoort MTC, Imperiali B (2017) Bacterial phosphoglycosyl transferases: initiators of glycan biosynthesis at the membrane interface. Glycobiology 27:820–833

    Article  CAS  Google Scholar 

  9. Ruan X, Pérez JM, Marolda CL et al (2012) The WaaL O-antigen lipopolysaccharide ligase has features in common with metal ion-independent inverting glycosyltransferases. Glycobiology 22:288–299

    Article  CAS  Google Scholar 

  10. Pan Y, Ruan X, Valvano MA et al (2012) Validation of protein topology models by oxidative labeling and mass spectrometry. J Am Soc Mass Spectr 23:889–898

    Article  CAS  Google Scholar 

  11. Pérez JM, McGarry MA, Marolda CL et al (2008) Functional analysis of the large periplasmic loop of the Escherichia coli K-12 WaaL O-antigen ligase. Mol Microbiol 70:1424–1440

    Article  Google Scholar 

  12. Trent MS, Ribeiro AA, Lin S et al (2001) An inner membrane enzyme in Salmonella and Escherichia coli that transfers 4-amino-4-deoxy-L-arabinose to lipid A: induction on polymyxin-resistant mutants and role of a novel lipid-linked donor. J Biol Chem 276:43122–43131

    Article  CAS  Google Scholar 

  13. Tavares-Carreon F, Fathy Mohamed Y, Andrade A et al (2016) ArnT proteins that catalyze the glycosylation of lipopolysaccharide share common features with bacterial N-oligosaccharyltransferases. Glycobiology 26:286–300

    CAS  PubMed  Google Scholar 

  14. Tavares-Carreón F, Patel KB, Valvano MA (2015) Burkholderia cenocepacia and Salmonella enterica ArnT proteins that transfer 4-amino-4-deoxy-L-arabinose to lipopolysaccharide share membrane topology and functional amino acids. Sci Rep 5:10773. accepted

    Article  Google Scholar 

  15. Islam ST, Taylor VL, Qi M et al (2010) Membrane topology mapping of the O-antigen flippase (Wzx), polymerase (Wzy), and ligase (WaaL) from Pseudomonas aeruginosa PAO1 reveals novel domain architectures. mBio 1:e00189–00110–e00189–00119

    Article  Google Scholar 

  16. Haardt M, Bremer E (1996) Use of phoA and lacZ fusions to study the membrane topology of ProW, a component of the osmoregulated ProU transport system of Escherichia coli. J Bacteriol 178:5370–5381

    Article  CAS  Google Scholar 

  17. Manoil C (1991) Analysis of membrane protein topology using alkaline phosphatase and beta-galactosidase gene fusions. Methods Cell Biol 34:61–75

    Article  CAS  Google Scholar 

  18. Bogdanov M, Heacock PN, Dowhan W (2010) Study of polytopic membrane protein topological organization as a function of membrane lipid composition. Methods Mol Biol 619:79–101

    Article  CAS  Google Scholar 

  19. Bogdanov M, Zhang W, Xie J et al (2005) Transmembrane protein topology mapping by the substituted cysteine accessibility method (SCAM™): application to lipid-specific membrane protein topogenesis. Methods 36:148–171

    Article  CAS  Google Scholar 

  20. Bogdanov M, Heacock PN, Dowhan W (2002) A polytopic membrane protein displays a reversible topology dependent on membrane lipid composition. EMBO J 21:2107–2116

    Article  CAS  Google Scholar 

  21. Lehrer J, Vigeant KA, Tatar LD et al (2007) Functional characterization and membrane topology of Escherichia coli WecA, a sugar-phosphate transferase initiating the biosynthesis of enterobacterial common antigen and O antigen lipopolysaccharide. J Bacteriol 189:2618–2628

    Article  CAS  Google Scholar 

  22. Ruan V, MonjarÃs Feria J, Hamad M, Valvano MA (2018) Escherichia coliand Pseudomonas aeruginosalipopolysaccharide O-antigen ligases share similar membrane topology and biochemical properties. Molecular Microbiology 110(1):95–113. https://doi.org/10.1111/mmi.14085

    Article  CAS  PubMed  Google Scholar 

  23. Marolda CL, Li B, Lung M et al (2010) Membrane topology and identification of critical amino acid residues in the Wzx O-antigen translocase from Escherichia coli O157:H4. J Bacteriol 192:6160–6171

    Article  CAS  Google Scholar 

  24. Koch S, Fritsch MJ, Buchanan G et al (2012) Escherichia coli TatA and TatB proteins have N-out, C-in topology in intact cells. J Biol Chem 287:14420–14431

    Article  CAS  Google Scholar 

  25. Rivera-Ordaz A, Bracher S, Sarrach S et al (2013) The sodium/proline transporter PutP of Helicobacter pylori. PLoS One 8:e83576

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Canadian Institutes of Health Research and Cystic Fibrosis Canada to M.A.V. A.F. was supported by a Doctoral Research Scholarship from the Department of Employment and Learning, Northern Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Valvano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tavares-Carreón, F., Ruan, X., Ford, A., Valvano, M.A. (2019). Sulfhydryl Labeling as a Tool to Investigate the Topology of Membrane Proteins Involved in Lipopolysaccharide Biosynthesis. In: Brockhausen, I. (eds) Bacterial Polysaccharides. Methods in Molecular Biology, vol 1954. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9154-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9154-9_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9153-2

  • Online ISBN: 978-1-4939-9154-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics