Skip to main content

Assays for the Enzymes Catalyzing the O-Acetylation of Bacterial Cell Wall Polysaccharides

  • Protocol
  • First Online:
Bacterial Polysaccharides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1954))

Abstract

The polysaccharides that comprise bacterial cell walls are commonly O-acetylated. This modification confers resistance to hydrolases of innate immune systems and/or controls endogenous autolytic activity. Herein, we present protocols for the compositional analysis of bacterial cell wall O-acetylation, and assays for monitoring O-acetyltransferases and O-acetylesterases. The assays are amenable for the development of high-throughput screens in search of inhibitors of the respective enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gille S, Pauly M (2012) O-acetylation of plant cell wall polysaccharides. Front Plant Sci 3:12

    Article  CAS  Google Scholar 

  2. Moynihan PJ, Sychantha D, Clarke AJ (2014) Chemical biology of peptidoglycan acetylation and deacetylation. Chemistry 54:44–50

    CAS  Google Scholar 

  3. Forsberg LS, Abshire TG, Friedlander A et al (2012) Localization and structural analysis of a conserved pyruvylated epitope in Bacillus anthracis secondary cell wall polysaccharides and characterization of the galactose-deficient wall polysaccharide from a virulent B. anthracis CDC 684. Glycobiology 22:1103–1117

    Article  CAS  Google Scholar 

  4. Spiers AJ, Bohannon J, Gehrig SM et al (2003) Biofilm formation at the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose. Mol Microbiol 50:15–27

    Article  CAS  Google Scholar 

  5. Franklin MJ, Ohman DE (1993) Identification of algF in the alginate biosynthetic gene cluster of Pseudomonas aeruginosa which is required for alginate acetylation. J Bacteriol 175:5057–5065

    Article  CAS  Google Scholar 

  6. Clarke AJ (1993) Compositional analysis of peptidoglycan by high-performance anion-exchange chromatography. Anal Biochem 212:344–350

    Article  CAS  Google Scholar 

  7. Weadge JT, Clarke AJ (2006) Identification and characterization of O-acetylpeptidoglycan esterase: a novel enzyme discovered in Neisseria gonorrhoeae. Biochemistry 45:839–851

    Article  CAS  Google Scholar 

  8. Moynihan PJ, Clarke AJ (2010) O-acetylation of peptidoglycan in gram-negative bacteria: identification and characterization of peptidoglycan O-acetyltransferase in Neisseria gonorrhoeae. J Biol Chem 285:13264–13273

    Article  CAS  Google Scholar 

  9. Moynihan PJ, Clarke AJ (2013) Assay for peptidoglycan O-acetyltransferase: a potential new antibacterial target. Anal Biochem 439:73–79

    Article  CAS  Google Scholar 

  10. Moynihan PJ, Clarke AJ (2014) Substrate specificity and kinetic characterization of peptidoglycan O-acetyltransferase B from Neisseria gonorrhoeae. J Biol Chem 289:16748–16760

    Article  CAS  Google Scholar 

  11. Moynihan PJ, Clarke AJ (2014) The mechanism of peptidoglycan O-acetyltransferase involves an Asp-His-Ser catalytic triad. Biochemistry 53:6243–6251

    Article  CAS  Google Scholar 

  12. Sychantha D, Jones C, Little DJ et al (2017) Structure and molecular basis of catalysis of the peptidoglycan O-acetyltransferase A (OatA) catalytic domain. PLoS Pathog 13:e1006667

    Article  Google Scholar 

  13. Sychantha D, Little DJ, Chapman RN et al (2017) Structural and mechanistic basis for the O-acetylation of SCWP, an essential activity for the proper assembly of cell walls in the Bacillus cereus group of pathogens. Nat Chem Biol 14:79–85

    Article  Google Scholar 

  14. Baker P, Ricer T, Moynihan PJ et al (2014) P. aeruginosa SGNH hydrolase-like proteins AlgJ and AlgX have similar topology but separate and distinct roles in alginate acetylation. PLoS Path 10:e1004334

    Article  Google Scholar 

  15. Maranha A, Moynihan PJ, Miranda V et al (2015) Octanoylation of early intermediates of mycobacterial methylglucose lipopolysaccharides. Sci Rep 5:13610

    Article  Google Scholar 

  16. Seepersaud R, Sychantha D, Bensing BA et al (2017) O-acetylation of the serine rich repeat glycoprotein GspB is coordinated with accessory Sec transport. PLoS Path 13:e1006558

    Article  Google Scholar 

  17. Urbanowicz BR, Peña MJ, Moniz HA et al (2014) Two Arabidopsis proteins synthesize acetylated xylan in vitro. Plant J 80:197–206

    Article  CAS  Google Scholar 

  18. Baumann AM, Bakkers MJ, Buettner FF et al (2015) 9-O-acetylation of sialic acids is catalysed by CASD1 via a covalent acetyl-enzyme intermediate. Nat Commun 6:7673

    Article  CAS  Google Scholar 

  19. Rogers HJ, Perkins HR (1959) Cell-wall mucopeptides of Staphylococcus aureus and Micrococcus lysodeikticus. Nature 184:520–524

    Article  CAS  Google Scholar 

  20. Strominger JL, Park JT, Thompson RE (1959) Composition of the cell wall of Staphylococcus aureus: its relation to the mechanism of action of penicillin. J Biol Chem 234:3263–3268

    CAS  PubMed  Google Scholar 

  21. Ghuysen J-M, Strominger JL (1963) Structure of the cell wall of Staphylococcus aureus strain Copenhagen. II. Separation and structure of disaccharides. Biochemistry 2:1119–11125

    Article  CAS  Google Scholar 

  22. Bernard E, Rolain T, Courtin P et al (2011) Characterization of O-acetylation of N-acetylglucosamine: a novel structural variation of bacterial peptidoglycan. J Biol Chem 286:23950–23958

    Article  CAS  Google Scholar 

  23. Scheurwater EM, Reid CW, Clarke AJ (2008) Lytic transglycosylases: bacterial space-making autolysins. Int J Biochem Cell Biol 40:586–591

    Article  CAS  Google Scholar 

  24. Clarke AJ, Dupont C (1992) O-acetylated peptidoglycan: its occurrence, pathobiological significance, and biosynthesis. Can J Microbiol 38:85–91

    Article  CAS  Google Scholar 

  25. Bera A, Herbert S, Jakob A et al (2005) Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol Microbiol 55:778–787

    Article  CAS  Google Scholar 

  26. Hoyle BD, Beveridge TJ (1984) Metal binding by the peptidoglycan sacculus of Escherichia coli K-12. Can J Microbiol 30:204–211

    Article  CAS  Google Scholar 

  27. Pfeffer JM, Strating H, Weadge JT et al (2006) Peptidoglycan O-acetylation and autolysin profile of Enterococcus faecalis in the viable but non-culturable state. J Bacteriol 188:902–908

    Article  CAS  Google Scholar 

  28. Rusconi F, Valton E, Nguyen R et al (2001) Quantification of sodium dodecyl sulfate in microliter-volume biochemical samples by visible light spectroscopy. Anal Biochem 295:31–37

    Article  CAS  Google Scholar 

  29. Helassa N, Vollmer W, Breukink E et al (2012) The membrane anchor of penicillin-binding protein PBP2a from Streptococcus pneumoniae influences peptidoglycan chain length. FEBS J 279:2071–2081

    Article  CAS  Google Scholar 

  30. Di Guilmi AM, Dessen A, Dideberg O et al (2003) The glycosyltransferase domain of penicillin-binding protein 2a from Streptococcus pneumoniae catalyzes the polymerization of murein glycan chains. J Bacteriol 185:4418–4423

    Article  Google Scholar 

  31. Qiao Y, Srisuknimit V, Rubino F et al (2017) Lipid II overproduction allows direct assay of transpeptidase inhibition by ß-lactams. Nat Chem Biol 13:793–798

    Article  CAS  Google Scholar 

  32. Abdullah MR, Gutiérrez-Fernández J, Pribyl T et al (2014) Structure of the pneumococcal l,d-carboxypeptidase DacB and pathophysiological effects of disabled cell wall hydrolases DacA and DacB. Mol Microbiol 93:1183–1206

    CAS  PubMed  Google Scholar 

  33. Pfeffer JM, Clarke AJ (2012) Identification of first-known inhibitors of O-acetylpeptidoglycan esterase: a potential new antibacterial target. Chembiochem 13:722–731

    Article  CAS  Google Scholar 

  34. https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Supelco/Product_Information_Sheet/t707002.pdf

  35. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Our research on O-acetylesterases and O-acetyltransferases has been supported by operating grants from the Canadian Institutes for Health Research, and more recently, the Canadian Glycomics Network, a National Centre of Excellence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Clarke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Brott, A.S., Sychantha, D., Clarke, A.J. (2019). Assays for the Enzymes Catalyzing the O-Acetylation of Bacterial Cell Wall Polysaccharides. In: Brockhausen, I. (eds) Bacterial Polysaccharides. Methods in Molecular Biology, vol 1954. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9154-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9154-9_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9153-2

  • Online ISBN: 978-1-4939-9154-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics