Skip to main content

MicroRNA Transcriptome Profiling in Heart of Trypanosoma cruzi-Infected Mice

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1955))

Abstract

MicroRNAs (miRNAs) are a class of small noncoding RNAs (typically 19–23 nucleotides) which act by annealing to partially complementary binding sites present on the 3′ untranslated regions (UTR) of messenger RNAs (mRNAs) leading to inhibition of protein translation or by inducing mRNA decay. Since their discovery, miRNAs have come to be recognized as master regulators of gene expression in plant and mammals, controlling tissue-specific protein expression. Up to one-third of mammalian mRNAs are susceptible to miRNA-mediated regulation. It has been shown that miRNAs are determinants of the physiology and pathophysiology of the cardiovascular system, and altered expression of muscle- and/or cardiac-specific miRNAs in myocardial tissue is involved in heart development and cardiovascular diseases, including myocardial hypertrophy, heart failure, and fibrosis. The analysis of miRNA expression pattern provides important information, as well as is a starting point to understand miRNA function in different tissues, during development, and in disease. Several techniques can be used for miRNA profiling analysis like high-throughput sequencing, microarrays, and real-time PCR using microfluidic low-density arrays. This chapter describes the complete methodology to perform miRNA profiling using the stem-loop reverse-transcription (RT)-based TaqMan® MicroRNA low-density arrays (TLDA) method. This methodology was used to perform miRNA profiling in the heart of T. cruzi acutely infected mice.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rassi A, Rassi A, Marin-Neto JA (2010) Chagas disease. Lancet 375:1388–1402

    Article  Google Scholar 

  2. Rassi A, Rassi A, Marcondes de Rezende J (2012) American trypanosomiasis (Chagas Disease). Infect Dis Clin N Am 26:275–291

    Article  Google Scholar 

  3. Cunha-Neto E, Chevillard C (2014) Chagas disease cardiomyopathy: immunopathology and genetics. Mediat Inflamm 2014:683230. https://doi.org/10.1155/2014/683230

    Article  CAS  Google Scholar 

  4. Navarro IC, Ferreira FM, Nakaya HI et al (2015) MicroRNA transcriptome profiling in heart of Trypanosoma cruzi-infected mice: parasitological and cardiological outcomes. PLoS Negl Trop Dis 9:e0003828. https://doi.org/10.1371/journal.pntd.0003828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854. https://doi.org/10.1016/0092-8674(93)90529-Y

    Article  CAS  PubMed  Google Scholar 

  6. Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, Ruvkun G (2000) The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell 5:659–669. https://doi.org/10.1016/S1097-2765(00)80245-2

    Article  CAS  PubMed  Google Scholar 

  7. Ambros V (2001) microRNAs. Cell 107:823–826. https://doi.org/10.1016/S0092-8674(01)00616-X

    Article  CAS  PubMed  Google Scholar 

  8. Ambros V (2001) microRNAs: tiny regulators with great potential. Cell 107:823–826. https://doi.org/10.1016/S0092-8674(01)00616-X

    Article  CAS  PubMed  Google Scholar 

  9. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524. https://doi.org/10.1038/nrm3838

    Article  CAS  PubMed  Google Scholar 

  10. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610. https://doi.org/10.1038/nrg2843

    Article  CAS  PubMed  Google Scholar 

  11. Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, Tsuchihashi T, McManus MT, Schwartz RJ, Srivastava D (2007) Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129:303–317. https://doi.org/10.1016/j.cell.2007.03.030

    Article  CAS  PubMed  Google Scholar 

  12. Carè A, Catalucci D, Felicetti F et al (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13:613–618. https://doi.org/10.1038/nm1582

    Article  CAS  PubMed  Google Scholar 

  13. Boštjančič E, Zidar N, Štajer D, Glavač D (2010) MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction. Cardiology 115:163–169. https://doi.org/10.1159/000268088

    Article  CAS  PubMed  Google Scholar 

  14. Duisters RF, Tijsen AJ, Schroen B et al (2009) MiR-133 and miR-30 regulate connective tissue growth factor: Implications for a role of micrornas in myocardial matrix remodeling. Circ Res 104:170–178. https://doi.org/10.1161/CIRCRESAHA.108.182535

    Article  CAS  PubMed  Google Scholar 

  15. Ferreira LRP, Frade AF, Santos RHB et al (2014) MicroRNAs miR-1, miR-133a, miR-133b, miR-208a and miR-208b are dysregulated in chronic Chagas disease cardiomyopathy. Int J Cardiol 175:409–417. https://doi.org/10.1016/j.ijcard.2014.05.019

    Article  PubMed  Google Scholar 

  16. Tian T, Wang J, Zhou X (2015) A review: microRNA detection methods. Org Biomol Chem 13:2226–2238. https://doi.org/10.1039/c4ob02104e

    Article  CAS  PubMed  Google Scholar 

  17. Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385. https://doi.org/10.1038/nrm1644

    Article  CAS  PubMed  Google Scholar 

  18. Brener Z (1962) Therapeutic activity and criterion of cure on mice experimentally infected with Trypanosoma cruzi. Rev Inst Med Trop Sao Paulo 4:389–396. http://www.imt.usp.br/wp-content/uploads/revista/vol04/389-396.pdf

    CAS  PubMed  Google Scholar 

  19. Gibson UE, Heid CA, Williams PM (1996) A novel method for real time quantitative RT-PCR. Genome Res 6:995–1001. https://doi.org/10.1101/gr.6.10.995

    Article  CAS  PubMed  Google Scholar 

  20. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300. https://doi.org/10.2307/2346101

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludmila Rodrigues Pinto Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ferreira, L.R.P. (2019). MicroRNA Transcriptome Profiling in Heart of Trypanosoma cruzi-Infected Mice. In: Gómez, K., Buscaglia, C. (eds) T. cruzi Infection. Methods in Molecular Biology, vol 1955. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9148-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9148-8_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9147-1

  • Online ISBN: 978-1-4939-9148-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics