Skip to main content

In Vivo Pharmacology Models for Cancer Target Research

  • Protocol
  • First Online:
Book cover Target Identification and Validation in Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1953))

Abstract

Experimental animal tumor models have been broadly used to evaluate anticancer drugs in the preclinical setting. They have also been widely applied for drug target discovery and validation, which usually follows four experimental strategies: first, assess the roles of putative drug targets using in vivo tumorigenicity and tumor growth kinetics assays of transplanted tumors, engineered through gain-of-function (GOF) by overexpressing transgene or knock-in (KI) or loss-of-function by gene silencing using knockdown (KD) or knockout (KO) or mutation via mutagenesis procedures; second, similarly genetically engineered mouse models (GEMM), through either germline or somatic cell procedures, are used to test the roles of potential targets in spontaneous tumorigenicity assays; third, patient-derived xenografts (PDXs), which most closely resemble patient genetics and histopathology, are used in tumor inhibition assays for evaluating target-/pathway-specific inhibitors, including large and small molecules, thus assessing the drug target; and fourth, the targets can be assessed in population-based trials, mouse clinical trials (MCT), so that the validation can be generally meaningful as performed in human clinical trials. This chapter outlines the commonly used protocols in cancer drug target research: the first four sections describe four sets of different, specific pharmacology protocols used in the respective cancer modeling stages, with the last section summarizing the common protocols applicable to all four pharmacology modeling steps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827–832. https://doi.org/10.1038/nbt.2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308. https://doi.org/10.1038/nprot.2013.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stovall DB, Wan M, Zhang Q, Dubey P, Sui G (2012) DNA vector-based RNA interference to study gene function in cancer. J Vis Exp 64:e4129. https://doi.org/10.3791/4129

    Article  CAS  Google Scholar 

  4. Li QX, Feuer G, Ouyang X, An X (2017) Experimental animal modeling for immuno-oncology. Pharmacol Ther 173:34–46. https://doi.org/10.1016/j.pharmthera.2017.02.002

    Article  CAS  PubMed  Google Scholar 

  5. Ke N, Zhou D, Chatterton JE, Liu G, Chionis J, Zhang J, Tsugawa L, Lynn R, Yu D, Meyhack B, Wong-Staal F, Li QX (2006) A new inducible RNAi xenograft model for assessing the staged tumor response to mTOR silencing. Exp Cell Res 312(15):2726–2734. https://doi.org/10.1016/j.yexcr.2006.05.001

    Article  CAS  PubMed  Google Scholar 

  6. Liu G, Wong-Staal F, Li QX (2006) Recent development of RNAi in drug target discovery and validation. Drug Discov Today Technol 3:293–300. https://doi.org/10.1016/j.ddtec.2006.09.003

    Article  PubMed  Google Scholar 

  7. Yang JP, Fan W, Rogers C, Chatterton JE, Bliesath J, Liu G, Ke N, Wang CY, Rhoades K, Wong-Staal F, Li QX (2006) A novel RNAi library based on partially randomized consensus sequences of nuclear receptors: identifying the receptors involved in amyloid beta degradation. Genomics 88(3):282–292

    Article  CAS  PubMed  Google Scholar 

  8. Zhou D, Wang C, Zhang J, Bliesath J, He QS, Ke N, Yu D, Li Q, Zhang LH, Wong-Staal F (2008) Generation of shRNA pool library: a revision of the biological technique from the viewpoint of chemistry. Chembiochem 9:1365–1367. https://doi.org/10.1002/cbic.200800049

    Article  CAS  PubMed  Google Scholar 

  9. Gargiulo G, Serresi M, Cesaroni M, Hulsman D, van Lohuizen M (2014) In vivo shRNA screens in solid tumors. Nat Protoc 9:2880–2902. https://doi.org/10.1038/nprot.2014.185

    Article  CAS  PubMed  Google Scholar 

  10. Zender L, Xue W, Zuber J, Semighini CP, Krasnitz A, Ma B, Zender P, Kubicka S, Luk JM, Schirmacher P, Mccombie WR, Wigler M, Hicks J, Hannon GJ, Powers S, Lowe SW (2008) An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 135:852–864. https://doi.org/10.1016/j.cell.2008.09.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Baratta MG, Schinzel AC, Zwang Y, Bandopadhayay P, Bowman-Colin C, Kutt J, Curtis J, Piao H, Wong LC, Kung AL, Beroukhim R, Bradner JE, Drapkin R, Hahn WC, Liu JF, Livingston DM (2015) An in-tumor genetic screen reveals that the BET bromodomain protein, BRD4, is a potential therapeutic target in ovarian carcinoma. Proc Natl Acad Sci 112:232–237. https://doi.org/10.1073/pnas.1422165112

    Article  CAS  PubMed  Google Scholar 

  12. Murugaesu N, Iravani M, Van Weverwijk A, Ivetic A, Johnson DA, Antonopoulos A, Fearns A, Jamal-Hanjani M, Sims D, Fenwick K, Mitsopoulos C, Gao Q, Orr N, Zvelebil M, Haslam SM, Dell A, Yarwood H, Lord CJ, Ashworth A, Isacke CM (2017) An in vivo functional screen identifi es ST6GalNAc2 sialyltransferase as a breast cancer metastasis suppressor. Cancer Discov 4(3):304–317. https://doi.org/10.1158/2159-8290.CD-13-0287

    Article  CAS  Google Scholar 

  13. Talmadge JE, Singh RK, Fidler IJ, Raz A (2007) Murine models to evaluate novel and conventional therapeutic strategies for cancer. Am J Pathol 170:793–804. https://doi.org/10.2353/ajpath.2007.060929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Garraway LA, Lander ES (2013) Lessons from the cancer genome. Cell 153(1):17–37. https://doi.org/10.1016/j.cell.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  15. Myers JN, Holsinger FC, Jasser SA, Bekele BN, Fidler IJ (2002) An orthotopic nude mouse model of oral tongue squamous cell carcinoma. Clin Cancer Res 8:293–298

    PubMed  Google Scholar 

  16. Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O, Eisenhaure TM, Jovanovic M, Graham DB, Jhunjhunwala S, Heidenreich M, Xavier RJ, Langer R, Anderson DG, Hacohen N, Regev A, Feng G, Sharp PA, Zhang F (2014) CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159:440–455. https://doi.org/10.1016/j.cell.2014.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Harms DW, Quadros RM, Seruggia D, Ohtsuka M, Takahashi G, Montoliu L, Gurumurthy CB (2014) Mouse genome editing using the CRISPR/Cas system. Curr Protoc Hum Genet 83:15.17.11–15.17.27. https://doi.org/10.1002/0471142905.hg1507s83

    Article  Google Scholar 

  18. Menezes ME, Shen X-N, Das SK, Emdad L, Guo C, Yuan F, Li Y-J, Archer MC, Zacksenhaus E, Windle JJ, Subler MA, Ben-David Y, Sarkar D, Wang X-Y, Fisher PB (2015) MDA-7/IL-24 functions as a tumor suppressor gene in vivo in transgenic mouse models of breast cancer. Oncotarget 6:36928–36942

    Article  PubMed  PubMed Central  Google Scholar 

  19. Walter AO, Tjin R, Sjin T, Haringsma HJ, Ohashi K, Sun J, Lee K, Dubrovskiy A, Labenski M, Zhu Z, Wang Z, Sheets M, Martin TS, Karp R, Kalken DV, Chaturvedi P, Niu D, Nacht M, Petter RC, Westlin W, Lin K, Jaw-tsai S, Raponi M, Dyke TV, Etter J, Weaver Z, Pao W, Singh J, Simmons AD, Harding TC, Allen A, Sjin RTT, Haringsma HJ, Sun J, Ohashi K, Lee K, Dubrovskiy A, Labenski M, Wang Z, Zhu Z, Sheets M, Martin TS, Karp R, van Kalken D, Chaturvedi P, Niu D, Nacht M, Petter RC, Lin K, Westlin W, Jaw-tsai S, Raponi M, Van Dyke T, Etter J, Pao W, Weaver Z, Singh J, Simmons AD, Harding TC, Allen A (2013) Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M- mediated resistance in NSCLC. Cancer Discov 3:1404–1416. https://doi.org/10.1158/2159-8290.CD-13-0314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vooijs M, Jonkers J, Lyons S (2002) Noninvasive imaging of spontaneous retinoblastoma pathway-dependent tumors in mice. Cancer Res 62:1862–1867

    CAS  PubMed  Google Scholar 

  21. Wang Y, Tseng J-C, Sun Y, Beck AH, Kung AL (2015) Noninvasive imaging of tumor burden and molecular pathways in mouse models of cancer. Cold Spring Harb Protoc 2015:135–144. https://doi.org/10.1101/pdb.top069930

    Article  PubMed  Google Scholar 

  22. Buonincontri G, Methner C, Carpenter TA, Hawkes RC, Sawiak SJ, Krieg T (2013) MRI and PET in mouse models of myocardial infarction video link. J Vis Exp 82:e50806. https://doi.org/10.3791/50806

    Article  Google Scholar 

  23. Lute KD, May KF, Lu P, Zhang H, Kocak E, Mosinger B, Wolford C, Phillips G, Caligiuri MA, Zheng P, Liu Y (2005) Human CTLA4 knock-in mice unravel the quantitative link between tumor immunity and autoimmunity induced by anti–CTLA-4 antibodies. Blood 106:3127–3133. https://doi.org/10.1182/blood-2005-06-2298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison aJP, Allison JP (2009) Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti–CTLA-4 antibodies. J Exp Med 206:1717–1725. https://doi.org/10.1084/jem.20082492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM, Arcaroli JJ, Messersmith WA, Eckhardt SG (2012) Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol 9(6):338–350. https://doi.org/10.1038/nrclinonc.2012.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guo S, Qian W, Cai J, Zhang L, Wery JP, Li QX (2016) Molecular pathology of patient tumors, patient-derived xenografts, and cancer cell lines. Cancer Res 76(16):4619–4626. https://doi.org/10.1158/0008-5472.CAN-15-3245

    Article  CAS  PubMed  Google Scholar 

  27. Yang M, Shan B, Li Q, Song X, Cai J, Deng J, Zhang L, Du Z, Lu J, Chen T, Wery JP, Chen Y (2013) Overcoming erlotinib resistance with tailored treatment regimen in patient-derived xenografts from naive Asian NSCLC patients. Int J Cancer 132(2):E74–E84. https://doi.org/10.1002/ijc.27813

    Article  CAS  PubMed  Google Scholar 

  28. Yang M, Xu X, Cai J, Ning J, Wery JP, Li QX (2016) NSCLC harboring EGFR exon-20 insertions after the regulatory C-helix of kinase domain responds poorly to known EGFR inhibitors. Int J Cancer 139(1):171–176. https://doi.org/10.1002/ijc.30047

    Article  CAS  PubMed  Google Scholar 

  29. Zhang L, Yang J, Cai J, Song X, Deng J, Huang X, Chen D, Yang M, Wery JP, Li S, Wu A, Li Z, Liu Y, Chen Y, Li Q, Ji J (2013) A subset of gastric cancers with EGFR amplification and overexpression respond to cetuximab therapy. Sci Rep 3:2992. https://doi.org/10.1038/srep02992

    Article  PubMed  PubMed Central  Google Scholar 

  30. An X, Liu J, Wang N, Wang D, Huang L, Zhang L, Cai J, Wery JP, Zhou D, Zhou J, Li QX (2017) AC220 and AraC cause differential inhibitory dynamics in patient-derived M5-AML with FLT3-ITD and, thus, ultimately distinct therapeutic outcomes. Exp Hematol 45:36–44 e32. https://doi.org/10.1016/j.exphem.2016.09.004

    Article  CAS  PubMed  Google Scholar 

  31. Czauderna F, Santel A, Hinz M, Fechtner M, Durieux B, Fisch G, Leenders F, Arnold W, Giese K, Klippel A, Jr K (2003) Inducible shRNA expression for application in a prostate cancer mouse model. Nucleic Acids Res 31:e127. https://doi.org/10.1093/nar/gng127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Speers C, Zhao SG, Kothari V, Santola A, Liu M, Wilder-Romans K, Evans J, Batra N, Bartelink H, Hayes DF, Lawrence TS, Brown PH, Pierce LJ, Feng FY (2016) Maternal embryonic leucine zipper kinase (MELK) as a novel mediator and biomarker of radioresistance in human breast cancer. Clin Cancer Res 22(23):5864–5875. https://doi.org/10.1158/1078-0432.CCR-15-2711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ma L, Saiyin H (2017) p48-Cre mice are an applicable model for locally invasive and metastatic pancreatic. Cancer:1–17

    Google Scholar 

  34. Chen D, Huang X, Cai J, Guo S, Qian W, Wery J-P, Li Q-x, Cai J, Guo S, Qian W, Wery J-P, Li Q-x (2015) A set of defined oncogenic mutation alleles seems to better predict the response to cetuximab in CRC patient-derived xenograft than KRAS 12/13 mutations. Oncotarget 6:40815–40821. https://doi.org/10.18632/oncotarget.5886

    Article  PubMed  PubMed Central  Google Scholar 

  35. Guo S, Chen D, Huang X, Cai J, Wery JP, Li Q-X, Sheng Guo DC (2016) Cetuximab response in CRC patient-derived xenografts seems predicted by an expression based Ras pathway signature. Oncotarget 7:50575–50581. https://doi.org/10.18632/oncotarget.10499

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gao H, Korn JM, Ferretti S, Monahan JE, Wang Y, Singh M, Zhang C, Schnell C, Yang G, Zhang Y, Balbin OA, Barbe S, Cai H, Casey F, Chatterjee S, Chiang DY, Chuai S, Cogan SM, Collins SD, Dammassa E, Ebel N, Embry M, Green J, Kauffmann A, Kowal C, Leary RJ, Lehar J, Liang Y, Loo A, Lorenzana E, Robert McDonald E 3rd, McLaughlin ME, Merkin J, Meyer R, Naylor TL, Patawaran M, Reddy A, Roelli C, Ruddy DA, Salangsang F, Santacroce F, Singh AP, Tang Y, Tinetto W, Tobler S, Velazquez R, Venkatesan K, Von Arx F, Wang HQ, Wang Z, Wiesmann M, Wyss D, Xu F, Bitter H, Atadja P, Lees E, Hofmann F, Li E, Keen N, Cozens R, Jensen MR, Pryer NK, Williams JA, Sellers WR (2015) High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat Med 21(11):1318–1325. https://doi.org/10.1038/nm.3954

    Article  CAS  PubMed  Google Scholar 

  37. Fridman R, Benton G, Aranoutova I, Kleinman HK, Bonfil RD (2012) Increased initiation and growth of tumor cell lines, cancer stem cells and biopsy material in mice using basement membrane matrix protein (Cultrex or Matrigel) co-injection. Nat Protoc 7:1138–1144. https://doi.org/10.1038/nprot.2012.053

    Article  CAS  PubMed  Google Scholar 

  38. Xiaoyu An XO, Zhang H, Li T, Zhou D, Li Q-X (2018) Immunophenotyping of orthotopic homograft (Syngeneic) of murine primary KPC pancreatic 2 ductal adenocarcinoma by flow cytometry. J Vis Exp 140:e57460

    Google Scholar 

  39. Pearson AT, Finkel KA, Warner KA, Nör F, Tice D, Martins MD, Jackson TL, Nör JE (2016) Patient-derived xenograft (PDX) tumors increase growth rate with time. Oncotarget 7:7993–8005. https://doi.org/10.18632/oncotarget.6919

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all the members of the Translational Oncology Division, Crown Bioscience, Inc. for their dedicated work in cancer animal modeling over the last decade, which contributes to many of these protocols. The authors would also like to thank Dr. Jody Barbeau for careful reading and editing of this manuscript and Mr. Ralph Joseph Manuel for some of the artworks. Dawei Chen and Xiaoyu An contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-Xiang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, D., An, X., Ouyang, X., Cai, J., Zhou, D., Li, QX. (2019). In Vivo Pharmacology Models for Cancer Target Research. In: Moll, J., Carotta, S. (eds) Target Identification and Validation in Drug Discovery. Methods in Molecular Biology, vol 1953. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9145-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9145-7_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9144-0

  • Online ISBN: 978-1-4939-9145-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics