Skip to main content

Using Functional Genetics in Haploid Cells for Drug Target Identification

  • Protocol
  • First Online:
Book cover Target Identification and Validation in Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1953))

Abstract

Pooled genetic screens are a powerful tool to identify targets for drug development as well as chemogenetic interactions. Various complementary methods for mutagenesis are available to generate highly complex cell populations, including mRNA knockdown, directed genome editing, as well as random genome mutagenesis. With the availability of a growing number of haploid mammalian cell lines, random mutagenesis is becoming increasingly powerful and represents an attractive alternative, e.g., to CRISPR-based screening. This chapter provides a step-by-step protocol for performing haploid gene trap screens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoepfner D, Helliwell SB, Sadlish H et al (2014) High-resolution chemical dissection of a model eukaryote reveals targets, pathways and gene functions. Microbiol Res 169:107–120. https://doi.org/10.1016/j.micres.2013.11.004

    Article  CAS  PubMed  Google Scholar 

  2. Forsburg SL (2001) The art and design of genetic screens: yeast. Nat Rev Genet 2:659–668. https://doi.org/10.1038/35088500

    Article  CAS  PubMed  Google Scholar 

  3. Hartwell LH, Culotti J, Pringle JR, Reid BJ (1974) Genetic control of the cell division cycle in yeast. Science 183:46–51. https://doi.org/10.1126/science.183.4120.46

    Article  CAS  PubMed  Google Scholar 

  4. Pris J, Clement D, Kessous A, Colombies P (1980) Near haploid cell line in lymphoid blast crisis of ph1-positive chronic myeloid leukemia. Cancer Res 40:1354–1359

    PubMed  Google Scholar 

  5. Brodeur G, Williams D, Look A et al (1981) Near-haploid acute lymphoblastic leukemia: a unique subgroup with a poor prognosis. Blood 58:14–19

    CAS  PubMed  Google Scholar 

  6. Kotecki M (1999) Isolation and characterization of a near-haploid human cell line. Exp Cell Res 252:273–280. https://doi.org/10.1006/excr.1999.4656

    Article  CAS  PubMed  Google Scholar 

  7. Carette JE, Guimaraes CP, Varadarajan M et al (2009) Haploid genetic screens in human cells identify host factors used by pathogens. Science 326:1231–1235. https://doi.org/10.1126/science.1178955

    Article  CAS  PubMed  Google Scholar 

  8. Carette JE, Pruszak J, Varadarajan M et al (2010) Generation of iPSCs from cultured human malignant cells. Blood 115:4039–4042. https://doi.org/10.1182/blood-2009-07-231845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carette JE, Raaben M, Wong AC et al (2011) Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 477:340–343. https://doi.org/10.1038/nature10348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carette JE, Guimaraes CP, Wuethrich I et al (2011) Global gene disruption in human cells to assign genes to phenotypes by deep sequencing. Nat Biotechnol 29:542–546. https://doi.org/10.1038/nbt.1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Perrot V, Richerd S, Valéro M (1991) Transition from haploidy to diploidy. Nature 351:315–317. https://doi.org/10.1038/351315a0

    Article  CAS  PubMed  Google Scholar 

  12. Freed JJ, Mezger-Freed L (1970) Stable haploid cultured cell lines from frog embryos. Proc Natl Acad Sci U S A 65:337–344. https://doi.org/10.1073/pnas.65.2.337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yi M, Hong N, Hong Y (2009) Generation of medaka fish haploid embryonic stem cells. Science 326:430–433. https://doi.org/10.1126/science.1175151

    Article  CAS  PubMed  Google Scholar 

  14. Elling U, Taubenschmid J, Wirnsberger G et al (2011) Forward and reverse genetics through derivation of haploid mouse embryonic stem cells. Cell Stem Cell 9:563–574. https://doi.org/10.1016/j.stem.2011.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Leeb M, Wutz A (2011) Derivation of haploid embryonic stem cells from mouse embryos. Nature 479:131–134. https://doi.org/10.1038/nature10448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li W, Shuai L, Wan H et al (2012) Androgenetic haploid embryonic stem cells produce live transgenic mice. Nature 490:407–411. https://doi.org/10.1038/nature11435

    Article  CAS  PubMed  Google Scholar 

  17. Yang H, Shi L, Wang BA et al (2012) Generation of genetically modified mice by oocyte injection of androgenetic haploid embryonic stem cells. Cell 149:605–617. https://doi.org/10.1016/j.cell.2012.04.002

    Article  CAS  PubMed  Google Scholar 

  18. Li W, Li X, Li T et al (2014) Genetic modification and screening in rat using haploid embryonic stem cells. Cell Stem Cell 14:404–414. https://doi.org/10.1016/j.stem.2013.11.016

    Article  CAS  PubMed  Google Scholar 

  19. Yang H, Liu Z, Ma Y et al (2013) Generation of haploid embryonic stem cells from Macaca fascicularis monkey parthenotes. Cell Res 23:1187–1200. https://doi.org/10.1038/cr.2013.93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sagi I, Chia G, Golan-Lev T et al (2016) Derivation and differentiation of haploid human embryonic stem cells. Nature 532:107–111. https://doi.org/10.1038/nature17408

    Article  CAS  PubMed  Google Scholar 

  21. Zhong C, Zhang M, Yin Q et al (2016) Generation of human haploid embryonic stem cells from parthenogenetic embryos obtained by microsurgical removal of male pronucleus. Cell Res 26:743–746

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang H, Zhang W, Yu J et al (2018) Genetic screening and multipotency in rhesus monkey haploid neural progenitor cells. Development 145. pii: dev160531. https://doi.org/10.1242/dev.160531

  23. Elling U, Wimmer RA, Leibbrandt A et al (2017) A reversible haploid mouse embryonic stem cell biobank resource for functional genomics. Nature 550:114–118. https://doi.org/10.1038/nature24027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Elling U, Penninger JM (2014) Genome wide functional genetics in haploid cells. FEBS Lett 588:2415. https://doi.org/10.1016/j.febslet.2014.06.032

    Article  CAS  PubMed  Google Scholar 

  25. Schnütgen F, Hansen J, De-Zolt S et al (2008) Enhanced gene trapping in mouse embryonic stem cells. Nucleic Acids Res 36:e133. https://doi.org/10.1093/nar/gkn603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Horn M, Kroef V, Allmeroth K et al (2018) Unbiased compound-protein interface mapping and prediction of chemoresistance loci through forward genetics in haploid stem cells. Oncotarget. https://doi.org/10.18632/oncotarget.24305

  27. Schmidt M, Schwarzwaelder K, Bartholomae C et al (2007) High-resolution insertion-site analysis by linear amplification-mediated PCR (LAM-PCR). Nat Methods 4:1051–1057. https://doi.org/10.1038/nmeth1103

    Article  CAS  PubMed  Google Scholar 

  28. Potter CJ, Luo L (2010) Splinkerette PCR for mapping transposable elements in Drosophila. PLoS One 5:e10168. https://doi.org/10.1371/journal.pone.0010168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ochman H, Gerber AS, Hartl DL (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Elling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Volz, J.C., Schuller, N., Elling, U. (2019). Using Functional Genetics in Haploid Cells for Drug Target Identification. In: Moll, J., Carotta, S. (eds) Target Identification and Validation in Drug Discovery. Methods in Molecular Biology, vol 1953. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9145-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9145-7_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9144-0

  • Online ISBN: 978-1-4939-9145-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics