Skip to main content

AAV Vectors for Efficient Gene Delivery to Rodent Hearts

  • Protocol
  • First Online:
Adeno-Associated Virus Vectors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1950))

Abstract

Currently, gene therapy is one of the most promising fields in biomedicine, with great therapeutic potential for an array of inherited and acquired diseases. Adeno-associated viral (AAV) vectors have emerged as promising tools to deliver selectively a therapeutic payload to target organs, including the heart. In this chapter, we describe the production and quality control of recombinant AAV (rAAV) vectors of the serotype 9, the most cardiotropic AAV serotype when delivered systemically in rodents. We also describe the systemic administration of rAAV vectors and the local delivery of rAAV vectors by direct intramyocardial injection. Taken together, the methods described in this chapter will allow the reader to deliver efficiently therapeutic genes to the rodent heart, both globally and regionally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sonntag F, Schmidt K, Kleinschmidt JA (2010) A viral assembly factor promotes AAV2 capsid formation in the nucleolus. Proc Natl Acad Sci U S A 107(22):10220–10225. https://doi.org/10.1073/pnas.1001673107

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kumaran N, Michaelides M, Smith AJ, Ali RR, Bainbridge JWB (2018) Retinal gene therapy. Br Med Bull. https://doi.org/10.1093/bmb/ldy005

    Article  PubMed  Google Scholar 

  3. Zincarelli C, Soltys S, Rengo G, Rabinowitz JE (2008) Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 16(6):1073–1080. https://doi.org/10.1038/mt.2008.76

    Article  CAS  PubMed  Google Scholar 

  4. Moulay G, Ohtani T, Ogut O, Guenzel A, Behfar A, Zakeri R, Haines P, Storlie J, Bowen L, Pham L, Kaye D, Sandhu G, O’Connor M, Russell S, Redfield M (2015) Cardiac AAV9 gene delivery strategies in adult canines: assessment by long-term serial SPECT imaging of sodium iodide symporter expression. Mol Ther 23(7):1211–1221. https://doi.org/10.1038/mt.2015.78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chamberlain K, Riyad JM, Weber T (2017) Cardiac gene therapy with adeno-associated virus-based vectors. 1Curr Opin Cardiol. https://doi.org/10.1097/HCO.0000000000000386

    Article  PubMed  PubMed Central  Google Scholar 

  6. Samulski RJ, Muzyczka N (2014) AAV-mediated gene therapy for research and therapeutic purposes. Annu Rev Virol 1(1):427–451. https://doi.org/10.1146/annurev-virology-031413-085355

    Article  CAS  PubMed  Google Scholar 

  7. Snyder RO, Francis J (2005) Adeno-associated viral vectors for clinical gene transfer studies. Curr Gene Ther 5(3):311–321

    Article  CAS  PubMed  Google Scholar 

  8. Wright JF (2008) Manufacturing and characterizing AAV-based vectors for use in clinical studies. Gene Ther 15(11):840–848. https://doi.org/10.1038/gt.2008.65

    Article  CAS  PubMed  Google Scholar 

  9. Ayuso E, Mingozzi F, Bosch F (2010) Production, purification and characterization of adeno-associated vectors. Curr Gene Ther 10(6):423–436

    Article  CAS  PubMed  Google Scholar 

  10. Grimm D, Kern A, Rittner K, Kleinschmidt JA (1998) Novel tools for production and purification of recombinant adenoassociated virus vectors. Hum Gene Ther 9(18):2745–2760

    Article  CAS  PubMed  Google Scholar 

  11. Wright JF (2009) Transient transfection methods for clinical adeno-associated viral vector production. Hum Gene Ther 20(7):698–706. https://doi.org/10.1089/hum.2009.064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vandenberghe LH, Xiao R, Lock M, Lin J, Korn M, Wilson JM (2010) Efficient serotype-dependent release of functional vector into the culture medium during adeno-associated virus manufacturing. Hum Gene Ther 21(10):1251–1257. https://doi.org/10.1089/hum.2010.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zolotukhin S, Byrne BJ, Mason E, Zolotukhin I, Potter M, Chesnut K, Summerford C, Samulski RJ, Muzyczka N (1999) Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther 6(6):973–985. https://doi.org/10.1038/sj.gt.3300938

    Article  CAS  PubMed  Google Scholar 

  14. Zincarelli C, Soltys S, Rengo G, Koch WJ, Rabinowitz JE (2010) Comparative cardiac gene delivery of adeno-associated virus serotypes 1-9 reveals that AAV6 mediates the most efficient transduction in mouse heart. Clin Transl Sci 3(3):81–89. https://doi.org/10.1111/j.1752-8062.2010.00190.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Watanabe S, Leonardson L, Hajjar RJ, Ishikawa K (2017) Cardiac gene delivery in large animal models: antegrade techniques. Methods Mol Biol 1521:227–235. https://doi.org/10.1007/978-1-4939-6588-5_16

    Article  CAS  PubMed  Google Scholar 

  16. Bonnet G, Ishikawa K, Hajjar RJ, Kawase Y (2017) Direct myocardial injection of vectors. Methods Mol Biol 1521:237–248. https://doi.org/10.1007/978-1-4939-6588-5_17

    Article  CAS  PubMed  Google Scholar 

  17. Hinkel R, Kupatt C (2017) Selective pressure-regulated retroinfusion for gene therapy application in ischemic heart disease. Methods Mol Biol 1521:249–260. https://doi.org/10.1007/978-1-4939-6588-5_18

    Article  CAS  PubMed  Google Scholar 

  18. Byrne MJ, Kaye DM (2017) Cardiac gene delivery using recirculating devices. Methods Mol Biol 1521:261–269. https://doi.org/10.1007/978-1-4939-6588-5_19

    Article  CAS  PubMed  Google Scholar 

  19. Katz MG, Fargnoli AS, Kendle AP, Bridges CR (2017) Molecular cardiac surgery with recirculating delivery (MCARD): procedure and vector transfer. Methods Mol Biol 1521:271–289. https://doi.org/10.1007/978-1-4939-6588-5_20

    Article  CAS  PubMed  Google Scholar 

  20. Federica del Monte KI, Roger J. Hajjar (2017) Gene transfer to rodent hearts in vivo. In: Ishikawa K (ed) Cardiac gene therapy: methods and protocols. Methods Mol Biol, vol 1521. Springer Science + Business Media, New York, pp 195–204. https://doi.org/10.1007/978-1-4939-6588-5_13

    Google Scholar 

  21. Speakman JR, Keijer J (2012) Not so hot: optimal housing temperatures for mice to mimic the thermal environment of humans. Mol Metab 2(1):5–9. https://doi.org/10.1016/j.molmet.2012.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Garber JC, Wayne Barbee R, Bielitzki JT, Clayton LA, Donovan JC, Hendriksen CFM, Kohn DF, Lipman NS, Locke PA, Melcher J, Quimby FW, Turner PV, Wood GA, Wurbel H (2011) Environment, housing and management. In: Fletcher CH (ed) Guide for the care and use of laboratory animals, 8th edn. National Academy of Sciences, Washington, DC, pp 45–112

    Google Scholar 

  23. Turner PV, Pekow C, Vasbinder MA, Brabb T (2011) Administration of substances to laboratory animals: equipment considerations, vehicle selection, and solute preparation. J Am Assoc Lab Anim Sci 50(5):614–627

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yardeni T, Eckhaus M, Morris HD, Huizing M, Hoogstraten-Miller S (2011) Retro-orbital injections in mice. Lab Anim (NY) 40(5):155–160. https://doi.org/10.1038/laban0511-155

    Article  Google Scholar 

  25. Kohlbrenner E, Weber T (2017) Production and characterization of vectors based on the cardiotropic AAV serotype 9. In: Ishikawa K (ed) Cardiac gene therapy: methods and protocols, vol 1521. Methods in molecular biology. Springer Science + Business Media, New York, pp 91–107

    Google Scholar 

  26. Aurnhammer C, Haase M, Muether N, Hausl M, Rauschhuber C, Huber I, Nitschko H, Busch U, Sing A, Ehrhardt A, Baiker A (2012) Universal real-time PCR for the detection and quantification of adeno-associated virus serotype 2-derived inverted terminal repeat sequences. Hum Gene Ther Methods 23(1):18–28. https://doi.org/10.1089/hgtb.2011.034

    Article  CAS  PubMed  Google Scholar 

  27. Kohlbrenner E, Henckaerts E, Rapti K, Gordon RE, Linden RM, Hajjar RJ, Weber T (2012) Quantification of AAV particle titers by infrared fluorescence scanning of coomassie-stained sodium dodecyl sulfate-polyacrylamide gels. Hum Gene Ther Methods 23(3):198–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fagone P, Wright JF, Nathwani AC, Nienhuis AW, Davidoff AM, Gray JT (2012) Systemic errors in quantitative polymerase chain reaction titration of self-complementary adeno-associated viral vectors and improved alternative methods. Hum Gene Ther Methods 23(1):1–7. https://doi.org/10.1089/hgtb.2011.104

    Article  CAS  PubMed  Google Scholar 

  29. Gray JT, Zolotukhin S (2011) Design and construction of functional AAV vectors. Methods Mol Biol 807:25–46. https://doi.org/10.1007/978-1-61779-370-7_2

    Article  CAS  PubMed  Google Scholar 

  30. Gruntman AM, Su L, Su Q, Gao G, Mueller C, Flotte TR (2015) Stability and compatibility of recombinant adeno-associated virus under conditions commonly encountered in human gene therapy trials. Hum Gene Ther Methods 26(2):71–76. https://doi.org/10.1089/hgtb.2015.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Turner PV, Brabb T, Pekow C, Vasbinder MA (2011) Administration of substances to laboratory animals: routes of administration and factors to consider. J Am Assoc Lab Anim Sci 50(5):600–613

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Steel CD, Stephens AL, Hahto SM, Singletary SJ, Ciavarra RP (2008) Comparison of the lateral tail vein and the retro-orbital venous sinus as routes of intravenous drug delivery in a transgenic mouse model. Lab Anim (NY) 37(1):26–32. https://doi.org/10.1038/laban0108-26

    Article  Google Scholar 

  33. Pacher P, Nagayama T, Mukhopadhyay P, Batkai S, Kass DA (2008) Measurement of cardiac function using pressure-volume conductance catheter technique in mice and rats. Nat Protoc 3(9):1422–1434. https://doi.org/10.1038/nprot.2008.138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Elena Chepurko, Malik Bisserier, and Anthony Fargnoli for helpful discussions. This work is supported by NIH P50 HL112324, R01 HL119046, R01 HL117505, R01 HL128099, R01 HL129814, R01 HL131404 and Trans-Atlantic Network of Excellence grants 13CVD01 and 14CVD03 from the Leducq Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Weber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lopez-Gordo, E., Kohlbrenner, E., Katz, M.G., Weber, T. (2019). AAV Vectors for Efficient Gene Delivery to Rodent Hearts. In: Castle, M. (eds) Adeno-Associated Virus Vectors. Methods in Molecular Biology, vol 1950. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9139-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9139-6_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9138-9

  • Online ISBN: 978-1-4939-9139-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics