Skip to main content

Intranasal Delivery of Adenoviral and AAV Vectors for Transduction of the Mammalian Peripheral Olfactory System

  • Protocol
  • First Online:
Adeno-Associated Virus Vectors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1950))

Abstract

Intranasal delivery of solutions is a straightforward methodology for viral vector transduction and gene transfer to the epithelia within the nasal cavity. Beyond the simplicity of the technique, intranasal delivery has demonstrated restricted transduction of the olfactory and respiratory epithelial tissues. Here we outline the procedure of viral vector intranasal delivery in early postnatal and adult mice, as well as adult rats. The procedure allows for robust transduction and ectopic gene delivery that can be used for the visualization of cellular structures, protein distribution, and assessment of viral vector-mediated therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doi K, Nibu K, Ishida H et al (2005) Adenovirus-mediated gene transfer in olfactory epithelium and olfactory bulb: a long-term study. Ann Otol Rhinol Laryngol 114:629–633

    Article  PubMed  Google Scholar 

  2. Zhao H, Otaki JM, Firestein S (1996) Adenovirus-mediated gene transfer in olfactory neurons in vivo. J Neurobiol 30:521–530. https://doi.org/10.1002/(SICI)1097-4695

    Article  CAS  PubMed  Google Scholar 

  3. Holtmaat AJGD, Hermens WTJMC, Beate Oestreicher A et al (1996) Efficient adenoviral vector-directed expression of a foreign gene to neurons and sustentacular cells in the mouse olfactory neuroepithelium. Mol Brain Res 41:148–156. https://doi.org/10.1016/0169-328X(96)00085-X

    Article  CAS  PubMed  Google Scholar 

  4. Mitchell AL, Dwyer A, Pitteloud N, Quinton R (2011) Genetic basis and variable phenotypic expression of Kallmann syndrome: towards a unifying theory. Trends Endocrinol Metab 22:249–258. https://doi.org/10.1016/j.tem.2011.03.002

    Article  CAS  PubMed  Google Scholar 

  5. Quinn K, Quirion MR, Lo CY et al (2011) Intranasal administration of adeno-associated virus type 12 (AAV12) leads to transduction of the nasal epithelia and can initiate transgene-specific immune response. Mol Ther 19:1990–1998. https://doi.org/10.1038/mt.2011.146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arimoto Y, Nagata H, Isegawa N et al (2002) In vivo expression of adenovirus-mediated lac Z gene in murine nasal mucosa. Acta Otolaryngol 122:627–633. https://doi.org/10.1080/000164802320396303

    Article  CAS  PubMed  Google Scholar 

  7. McIntyre JC, Davis EE, Joiner A et al (2012) Gene therapy rescues cilia defects and restores olfactory function in a mammalian ciliopathy model. Nat Med 18:1423–1428. https://doi.org/10.1038/nm.2860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Williams CL, Uytingco CR, Green WW et al (2017) Gene therapeutic reversal of peripheral olfactory impairment in Bardet-Biedl syndrome. Mol Ther 25. https://doi.org/10.1016/j.ymthe.2017.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shivkumar M, Milho R, May JS et al (2013) Herpes simplex virus 1 targets the murine olfactory neuroepithelium for host entry. J Virol 87:10477–10488. https://doi.org/10.1128/JVI.01748-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cmielewski P, Donnelley M, Parsons DW (2014) Long-term therapeutic and reporter gene expression in lentiviral vector treated cystic fibrosis mice. J Gene Med 16:291–299. https://doi.org/10.1002/jgm.2778

    Article  CAS  PubMed  Google Scholar 

  11. Sadrian B, Chen H, Gong Q (2011) Lentivirus-mediated genetic manipulation and visualization of olfactory sensory neurons in vivo. J Vis Exp (51). https://doi.org/10.3791/2951

  12. Patel M, Giddings AM, Sechelski J, Olsen JC (2013) High efficiency gene transfer to airways of mice using influenza hemagglutinin pseudotyped lentiviral vectors. J Gene Med 15:51–62. https://doi.org/10.1002/jgm.2695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sinn PL, Arias AC, Brogden KA, PB MC (2008) Lentivirus vector can be readministered to nasal epithelia without blocking immune responses. J Virol 82:10684–10692. https://doi.org/10.1128/JVI.00227-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Milho R, Frederico B, Efstathiou S, Stevenson PG (2012) A heparan-dependent herpesvirus targets the olfactory neuroepithelium for host entry. PLoS Pathog 8. https://doi.org/10.1371/journal.ppat.1002986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Summerford C, Samulski RJ (1998) Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 72:1438–1445

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zaiss AK, Foley EM, Lawrence R et al (2016) Hepatocyte heparan sulfate is required for adeno-associated virus 2 but dispensable for adenovirus 5 liver transduction in vivo. J Virol 90:412–420. https://doi.org/10.1128/JVI.01939-15

    Article  CAS  PubMed  Google Scholar 

  17. Kern A, Schmidt K, Leder C et al (2003) Identification of a heparin-binding motif on adeno-associated virus type 2 capsids. J Virol 77:11072–11081. https://doi.org/10.1128/JVI.77.20.11072-11081.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cao L, Schrank BR, Rodriguez S et al (2012) Aβ alters the connectivity of olfactory neurons in the absence of amyloid plaques in vivo. Nat Commun 3:1009. https://doi.org/10.1038/ncomms2013

    Article  CAS  PubMed  Google Scholar 

  19. Seiler MP, Miller AD, Zabner J, Halbert CL (2006) Adeno-associated virus types 5 and 6 use distinct receptors for cell entry. Hum Gene Ther 17:10–19. https://doi.org/10.1089/hum.2006.17.10

    Article  CAS  PubMed  Google Scholar 

  20. Kurosaki F, Uchibori R, Mato N et al (2017) Optimization of adeno-associated virus vector-mediated gene transfer to the respiratory tract. Gene Ther 24:290–297. https://doi.org/10.1038/gt.2017.19

    Article  CAS  PubMed  Google Scholar 

  21. Limberis MP, Vandenberghe LH, Zhang L et al (2009) Transduction efficiencies of novel AAV vectors in mouse airway epithelium in vivo and human ciliated airway epithelium in vitro. Mol Ther 17:294–301. https://doi.org/10.1038/mt.2008.261

    Article  CAS  PubMed  Google Scholar 

  22. Venkatraman G, Behrens M, Pyrski M, Margolis FL (2005) Expression of Coxsackie-Adenovirus receptor (CAR) in the developing mouse olfactory system. J Neurocytol 34:295–305. https://doi.org/10.1007/s11068-005-8359-8

    Article  CAS  PubMed  Google Scholar 

  23. Soudais C, Laplace-Builhe C, Kissa K, Kremer EJ (2001) Preferential transduction of neurons by canine adenovirus vectors and their efficient retrograde transport in vivo. FASEB J 15:2283–2285. https://doi.org/10.1096/fj.01-0321fje

    Article  CAS  PubMed  Google Scholar 

  24. Bergelson JM, Cunningham JA, Droguett G et al (1997) Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320–1323. https://doi.org/10.1126/science.275.5304.1320

    Article  CAS  PubMed  Google Scholar 

  25. Tuve S, Wang H, Jacobs JD et al (2008) Role of cellular heparan sulfate proteoglycans in infection of human adenovirus serotype 3 and 35. PLoS Pathog 4. https://doi.org/10.1371/journal.ppat.1000189

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhao H, Ivic L, Otaki JM et al (1998) Functional expression of a mammalian odorant receptor. Science 279:237–242. https://doi.org/10.1126/science.279.5348.237

    Article  CAS  PubMed  Google Scholar 

  27. Williams CL, McIntyre JC, Norris SR et al (2014) Direct evidence for BBSome-associated intraflagellar transport reveals distinct properties of native mammalian cilia. Nat Commun 5:5813. https://doi.org/10.1038/ncomms6813

    Article  CAS  PubMed  Google Scholar 

  28. Thacker EE, Timares L, Matthews QL (2009) Strategies to overcome host immunity to adenovirus vectors in vaccine development. Expert Rev Vaccines 8:761–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Machholz E, Mulder G, Ruiz C et al (2012) Manual restraint and common compound administration routes in mice and rats. J Vis Exp. https://doi.org/10.3791/2771

  30. Zabner J, Seiler M, Walters R et al (2000) Adeno-associated virus type 5 (AAV5) but not AAV2 binds to the apical surfaces of airway epithelia and facilitates gene transfer. J Virol 74:3852–3858. https://doi.org/10.1128/JVI.74.8.3852-3858.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Halbert CL, Allen JM, Miller AD (2001) Adeno-associated virus type 6 (AAV6) vectors mediate efficient transduction of airway epithelial cells in mouse lungs compared to that of AAV2 vectors. J Virol 75:6615–6624. https://doi.org/10.1128/JVI.75.14.6615-6624.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Muruve DA (2004) The innate immune response to adenovirus vectors. Hum Gene Ther 15:1157–1166. https://doi.org/10.1089/hum.2004.15.1157

    Article  CAS  PubMed  Google Scholar 

  33. Mingozzi F, High KA (2013) Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood 122:23–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gau P, Rodriguez S, De Leonardis C et al (2011) Air-assisted intranasal instillation enhances adenoviral delivery to the olfactory epithelium and respiratory tract. Gene Ther 18:432–436. https://doi.org/10.1038/gt.2010.153

    Article  CAS  PubMed  Google Scholar 

  35. Gross EA, Swenberg JA, Fields S, Popp JA (1982) Comparative morphometry of the nasal cavity in rats and mice. J Anat 135:83–88

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Vora SR, Camci ED, Cox TC (2016) Postnatal ontogeny of the cranial base and craniofacial skeleton in male C57BL/6J mice: a reference standard for quantitative analysis. Front Physiol 6. https://doi.org/10.3389/fphys.2015.00417

  37. Southam DS, Dolovich M, O’Byrne PM, Inman MD (2002) Distribution of intranasal instillation in mice: effects of volume, time, body position and anesthesia. Am J Phys Lung Cell Mol Phys 282:L833–L839. https://doi.org/10.1152/ajplung.00173.2001

    Article  CAS  Google Scholar 

  38. Gruntman AM, Mueller C, Flotte TR, Gao G (2012) Gene transfer in the lung using recombinant adeno-associated virus. Curr Protoc Microbiol Chapter 14:Unit 14D.2. https://doi.org/10.1002/9780471729259.mc14d02s26

    Article  Google Scholar 

  39. Miller MA, Stabenow JM, Parvathareddy J et al (2012) Visualization of murine intranasal dosing efficiency using luminescent Francisella tularensis: effect of instillation volume and form of anesthesia. PLoS One 7. https://doi.org/10.1371/journal.pone.0031359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hua X, Zeman KL, Zhou B et al (2010) Noninvasive real-time measurement of nasal mucociliary clearance in mice by pinhole gamma scintigraphy. J Appl Physiol 108:189–196. https://doi.org/10.1152/japplphysiol.00669.2009

    Article  PubMed  Google Scholar 

  41. Ugai H, Watanabe S, Suzuki E et al (2002) Stability of a recombinant adenoviral vector: optimization of conditions for storage, transport and delivery. Jpn J Cancer Res 93:598–603. https://doi.org/10.1111/j.1349-7006.2002.tb01296.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Santry LA, Ingrao JC, Yu DL et al (2017) AAV vector distribution in the mouse respiratory tract following four different methods of administration. BMC Biotechnol 17. https://doi.org/10.1186/s12896-017-0365-2

  43. Ostrowski LE, Yin W, Patel M et al (2014) Restoring ciliary function to differentiated primary ciliary dyskinesia cells with a lentiviral vector. Gene Ther 21:253–261. https://doi.org/10.1038/gt.2013.79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Intellectual support was provided by members of the University of Florida Center for Smell and Taste. This work was supported by National Institutes of Health R01DC009606 (J.R.M.).

Competing Interests

The authors declare no competing or financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey R. Martens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Uytingco, C.R., Martens, J.R. (2019). Intranasal Delivery of Adenoviral and AAV Vectors for Transduction of the Mammalian Peripheral Olfactory System. In: Castle, M. (eds) Adeno-Associated Virus Vectors. Methods in Molecular Biology, vol 1950. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9139-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9139-6_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9138-9

  • Online ISBN: 978-1-4939-9139-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics