Skip to main content

Indirect Lipid Transfer Protein Activity Measurements Using Quantification of Glycosphingolipid Production

  • Protocol
  • First Online:
Intracellular Lipid Transport

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1949))

Abstract

Here we summarize how glycosphingolipid production can be followed using metabolic labeling with radiolabeled lipid precursors. No assays are available yet that directly would address the lipid transfer protein activity in vivo. Therefore, these approaches can serve as tools to indirectly study the lipid transfer protein activity in cells, by monitoring their impact on the glycosphingolipid homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kjellberg MA, Backman APE, Möuts A et al (2017) Purification and validation of lipid transfer proteins. Methods Mol Biol 1609:231–239

    Article  CAS  Google Scholar 

  2. Mattjus P (2016) Specificity of the mammalian glycolipid transfer proteins. Chem Phys Lipids 194:72–78

    Article  CAS  Google Scholar 

  3. Tuuf J, Mattjus P (2014) Membranes and mammalian glycolipid transferring proteins. Chem Phys Lipids 178:27–37

    Article  CAS  Google Scholar 

  4. Kjellberg MA, Lönnfors M, Slotte JP et al (2015) Metabolic conversion of ceramides in HeLa cells—a cholesteryl phosphocholine delivery approach. PLoS One 10:e0143385

    Article  Google Scholar 

  5. Kjellberg MA, Backman AP, Ohvo-Rekilä H et al (2014) Alternation in the glycolipid transfer protein expression causes changes in the cellular lipidome. PLoS One 9:e97263

    Article  Google Scholar 

  6. Kjellberg MA, Mattjus P (2013) Glycolipid transfer protein expression is affected by glycosphingolipid synthesis. PLoS One 8:e70283

    Article  CAS  Google Scholar 

  7. Tuuf J, Wistbacka L, Mattjus P (2009) The glycolipid transfer protein interacts with the vesicle-associated membrane protein-associated protein VAP-A. Biochem Biophys Res Commun 388:395–399

    Article  CAS  Google Scholar 

  8. Tuuf J, Mattjus P (2007) Human glycolipid transfer protein-intracellular localization and effects on the sphingolipid synthesis. Biochim Biophys Acta 1771:1353–1363

    Article  CAS  Google Scholar 

  9. Fuchs B, Suss R, Teuber K et al (2011) Lipid analysis by thin-layer chromatography-a review of the current state. J Chromatogr A 1218:2754–2774

    Article  CAS  Google Scholar 

  10. Byun HS, Bittman R (2018) Chemical preparation of sphingosine and sphingolipids: a review of enantioselective synthesis. In: Cevs G (ed) Phospholipids handbook. CRC Press, Boca Raton, FL, pp 97–141

    Google Scholar 

  11. Lutzke BS, Braughler JM (1990) An improved method for the identification and quantitation of biological lipids by HPLC using laser light-scattering detection. J Lipid Res 31:2127–2130

    CAS  PubMed  Google Scholar 

  12. Schwarzmann G (1978) A simple and novel method for tritium labeling of gangliosides and other sphingolipids. Biochim Biophys Acta 529:106–114

    Article  CAS  Google Scholar 

  13. Lönnfors M, Långvik O, Björkbom A et al (2013) Cholesteryl phosphocholine—a study on its interactions with ceramides and other membrane lipids. Langmuir 29:2319–2329

    Article  Google Scholar 

  14. Sukumaran P, Lönnfors M, Långvik O et al (2013) Complexation of c6-ceramide with cholesteryl phosphocholine—a potent solvent-free ceramide delivery formulation for cells in culture. PLoS One 8:e61290

    Article  CAS  Google Scholar 

  15. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  16. Irwin M, Leaver AG (1956) Use of the orcinol-sulphuric acid reaction in the positive identification of certain monosaccharides from a salivary mucoid. Nature 177:1126

    Article  CAS  Google Scholar 

  17. Baron CB, Coburn RF (1984) Comparison of two copper reagents for detection of saturated and unsaturated neutral lipids by charring densitometry. J Liq Chromatogr 7:2793–2801

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Svenska Kulturfonden, Sigrid Jusélius Foundation, Magnus Ehrnrooth Foundation, Medicinska Understödsföreningen Liv och Hälsa, Svensk Österbottniska Samfundet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Mattjus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Backman, A.P.E., Halin, J., Kjellberg, M.A., Mattjus, P. (2019). Indirect Lipid Transfer Protein Activity Measurements Using Quantification of Glycosphingolipid Production. In: Drin, G. (eds) Intracellular Lipid Transport. Methods in Molecular Biology, vol 1949. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9136-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9136-5_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9135-8

  • Online ISBN: 978-1-4939-9136-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics