Skip to main content

Methods for Hyaluronan Molecular Mass Determination by Agarose Gel Electrophoresis

  • Protocol
Book cover The Extracellular Matrix

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1952))

Abstract

The average molecular mass of hyaluronan (HA) in most healthy biological fluids and tissues is usually about 6000–8000 kDa, but the biosynthetic mechanism results in a polydisperse mixture of sizes. Subsequent enzymatic degradation, or the action of reactive oxygen and nitrogen species, can further increase polydispersity and decrease the average size. Fragmented HA can be a biomarker of inflammation. In addition, reductions in HA size are associated with tissue remodeling and repair processes. Some cell-surface receptor proteins have been reported to have HA-binding affinities that are size specific, and participate in activation of signaling cascades controlling multiple aspects of cell behavior. Here we describe simple agarose gel electrophoresis protocols for the determination of the molecular mass distribution of HA isolated from tissues and fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knudson W, Gundlach MW, Schmid TM, Conrad HE (1984) Selective hydrolysis of chondroitin sulfates by hyaluronidase. Biochemistry 23(2):368–375

    Article  CAS  Google Scholar 

  2. Hampson IN, Gallagher JT (1984) Separation of radiolabelled glycosaminoglycan oligosaccharides by polyacrylamide-gel electrophoresis. Biochem J 221(3):697–705

    Article  CAS  Google Scholar 

  3. Cowman MK, Slahetka MF, Hittner DM, Kim J, Forino M, Gadelrab G (1984) Polyacrylamide-gel electrophoresis and Alcian Blue staining of sulphated glycosaminoglycan oligosaccharides. Biochem J 221(3):707–716

    Article  CAS  Google Scholar 

  4. Min H, Cowman MK (1986) Combined Alcian blue and silver staining of glycosaminoglycans in polyacrylamide gels: application to electrophoretic analysis of molecular weight distribution. Anal Biochem 155(2):275–285

    Article  CAS  Google Scholar 

  5. Lee HG, Cowman MK (1994) An agarose gel electrophoretic method for analysis of hyaluronan molecular weight distribution. Anal Biochem 219(2):278–287

    Article  CAS  Google Scholar 

  6. Bhilocha S, Amin R, Pandya M, Yuan H, Tank M, LoBello J, Shytuhina A, Wang W, Wisniewski HG, de la Motte C, Cowman MK (2011) Agarose and polyacrylamide gel electrophoresis methods for molecular mass analysis of 5- to 500-kDa hyaluronan. Anal Biochem 417(1):41–49

    Article  CAS  Google Scholar 

  7. Cowman MK, Chen CC, Pandya M, Yuan H, Ramkishun D, LoBello J, Bhilocha S, Russell-Puleri S, Skendaj E, Mijovic J, Jing W (2011) Improved agarose gel electrophoresis method and molecular mass calculation for high molecular mass hyaluronan. Anal Biochem 417(1):50–56

    Article  CAS  Google Scholar 

  8. Ikegami-Kawai M, Takahashi T (2002) Microanalysis of hyaluronan oligosaccharides by polyacrylamide gel electrophoresis and its application to assay of hyaluronidase activity. Anal Biochem 311(2):157–165

    Article  CAS  Google Scholar 

  9. Cowman MK (2017) Hyaluronan and hyaluronan fragments. Adv Carbohydr Chem Biochem 74:1–59

    Article  Google Scholar 

  10. Jing W, DeAngelis PL (2004) Synchronized chemoenzymatic synthesis of monodisperse hyaluronan polymers. J Biol Chem 279(40):42345–42349

    Article  CAS  Google Scholar 

  11. Jing W, Haller FM, Almond A, DeAngelis PL (2006) Defined megadalton hyaluronan polymer standards. Anal Biochem 355(2):183–188

    Article  CAS  Google Scholar 

  12. Armstrong SE, Bell DR (2002) Measurement of high-molecular-weight hyaluronan in solid tissue using agarose gel electrophoresis. Anal Biochem 308(2):255–264

    Article  CAS  Google Scholar 

  13. Takeo S, Fujise M, Akiyama T, Habuchi H, Itano N, Matsuo T, Aigaki T, Kimata K, Nakato H (2004) In vivo hyaluronan synthesis upon expression of the mammalian hyaluronan synthase gene in Drosophila. J Biol Chem 279(18):18920–18925

    Article  CAS  Google Scholar 

  14. Yuan H, Tank M, Alsofyani A, Shah N, Talati N, LoBello JC, Kim JR, Oonuki Y, de la Motte CA, Cowman MK (2013) Molecular mass dependence of hyaluronan detection by sandwich ELISA-like assay and membrane blotting using biotinylated hyaluronan binding protein. Glycobiology 23(11):1270–1280

    Article  CAS  Google Scholar 

  15. Tolg C, Hamilton SR, Zalinska E, McCulloch L, Amin R, Akentieva N, Winnik F, Savani R, Bagli DJ, Luyt LG, Cowman MK, McCarthy JB, Turley EA (2012) A RHAMM mimetic peptide blocks hyaluronan signaling and reduces inflammation and fibrogenesis in excisional skin wounds. Am J Pathol 181(4):1250–1270

    Article  CAS  Google Scholar 

  16. Yuan H, Amin R, Ye X, de la Motte CA, Cowman MK (2015) Determination of hyaluronan molecular mass distribution in human breast milk. Anal Biochem 474:78–88

    Article  CAS  Google Scholar 

  17. Tolg C, Yuan H, Flynn SM, Basu K, Ma J, Tse KCK, Kowalska B, Vulkanesku D, Cowman MK, McCarthy JB, Turley EA (2017) Hyaluronan modulates growth factor induced mammary gland branching in a size dependent manner. Matrix Biol 63:117–132

    Article  CAS  Google Scholar 

  18. Yingsung W, Zhuo L, Morgelin M, Yoneda M, Kida D, Watanabe H, Ishiguro N, Iwata H, Kimata K (2003) Molecular heterogeneity of the SHAP-hyaluronan complex. Isolation and characterization of the complex in synovial fluid from patients with rheumatoid arthritis. J Biol Chem 278(35):32710–32718

    Article  CAS  Google Scholar 

  19. He H, Li W, Tseng DY, Zhang S, Chen SY, Day AJ, Tseng SC (2009) Biochemical characterization and function of complexes formed by hyaluronan and the heavy chains of inter-alpha-inhibitor (HC*HA) purified from extracts of human amniotic membrane. J Biol Chem 284(30):20136–20146

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary K. Cowman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Cowman, M.K. (2019). Methods for Hyaluronan Molecular Mass Determination by Agarose Gel Electrophoresis. In: Vigetti, D., Theocharis, A.D. (eds) The Extracellular Matrix. Methods in Molecular Biology, vol 1952. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9133-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9133-4_8

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9132-7

  • Online ISBN: 978-1-4939-9133-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics