Skip to main content

The Complex Interplay Between Extracellular Matrix and Cells in Tissues

  • Protocol
The Extracellular Matrix

Abstract

Extracellular matrix (ECM) maintains the structural integrity of tissues and regulates cell and tissue functions. ECM is comprised of fibrillar proteins, proteoglycans (PGs), glycosaminoglycans, and glycoproteins, creating a heterogeneous but well-orchestrated network. This network communicates with resident cells via cell-surface receptors. In particular, integrins, CD44, discoidin domain receptors, and cell-surface PGs and additionally voltage-gated ion channels can interact with ECM components, regulating signaling cascades as well as cytoskeleton configuration. The interplay of ECM with recipient cells is enriched by the extracellular vesicles, as they accommodate ECM, signaling, and cytoskeleton molecules in their cargo. Along with the numerous biological properties that ECM can modify, autophagy and angiogenesis, which are critical for tissue homeostasis, are included. Throughout development and disease onset and progression, ECM endures rearrangement to fulfill cellular requirements. The main responsible molecules for tissue remodeling are ECM-degrading enzymes including matrix metalloproteinases, plasminogen activators, cathepsins, and hyaluronidases, which can modify the ECM structure and function in a dynamic mode. A brief summary of the complex interplay between ECM macromolecules and cells in tissues and the contribution of ECM in tissue homeostasis and diseases is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Werb Z, Lu P (2015) The role of stroma in tumor development. Cancer J 21(4):250–253

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Theocharis AD, Karamanos NK (2017) Proteoglycans remodeling in cancer: underlying molecular mechanisms. Matrix Biol

    Google Scholar 

  3. Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123(Pt 24):4195–4200

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Clause KC, Barker TH (2013) Extracellular matrix signaling in morphogenesis and repair. Curr Opin Biotechnol 24(5):830–833

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Theocharis AD, Gialeli C, Hascall VC, Karamanos NK (2012) Extracellular matrix: a functional scaffold. In: Karamanos NK (ed) Extracellular matrix: pathobiology and signaling. Walter de Gruyter GmbH & Co. KG, Berlin/Boston, pp 3–20

    Google Scholar 

  6. Pickup MW, Mouw JK, Weaver VM (2014) The extracellular matrix modulates the hallmarks of cancer. EMBO Rep 15(12):1243–1253

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Neill T, Schaefer L, Iozzo RV (2014) Instructive roles of extracellular matrix on autophagy. Am J Pathol 184(8):2146–2153

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK (2016) Extracellular matrix structure. Adv Drug Deliv Rev 97:4–27

    CAS  PubMed  Google Scholar 

  9. Pozzi A, Yurchenco PD, Iozzo RV (2017) The nature and biology of basement membranes. Matrix Biol 57-58:1–11

    CAS  PubMed  Google Scholar 

  10. Iozzo RV, Schaefer L (2015) Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol 42:11–55

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Raspanti M, Reguzzoni M, Protasoni M, Basso P (2018) Not only tendons: the other architecture of collagen fibrils. Int J Biol Macromol 107 (1668–1674

    Google Scholar 

  12. Ottani V, Martini D, Franchi M, Ruggeri A, Raspanti M (2002) Hierarchical structures in fibrillar collagens. Micron 33(7):587–596

    CAS  PubMed  Google Scholar 

  13. Multhaupt HAB, Leitinger B, Gullberg D, Couchman JR (2016) Extracellular matrix component signaling in cancer. Adv Drug Deliv Rev 97:28–40

    CAS  PubMed  Google Scholar 

  14. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110(6):673–687

    CAS  PubMed  Google Scholar 

  15. Sun CC, Qu XJ, Gao ZH (2014) Integrins: players in cancer progression and targets in cancer therapy. Anti-Cancer Drugs 25(10):1107–1121

    CAS  PubMed  Google Scholar 

  16. Seguin L, Desgrosellier JS, Weis SM, Cheresh DA (2015) Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol 25(4):234–240

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Fu HL, Valiathan RR, Arkwright R, Sohail A, Mihai C, Kumarasiri M, Mahasenan KV, Mobashery S, Huang P, Agarwal G, Fridman R (2013) Discoidin domain receptors: unique receptor tyrosine kinases in collagen-mediated signaling. J Biol Chem 288(11):7430–7437

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Leitinger B (2014) Discoidin domain receptor functions in physiological and pathological conditions. Int Rev Cell Mol Biol 310:39–87

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Valiathan RR, Marco M, Leitinger B, Kleer CG, Fridman R (2012) Discoidin domain receptor tyrosine kinases: new players in cancer progression. Cancer Metastasis Rev 31(1–2):295–321

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Orian-Rousseau V (2015) CD44 acts as a signaling platform controlling tumor progression and metastasis. Front Immunol 6:154

    PubMed  PubMed Central  Google Scholar 

  21. Orian-Rousseau V (2010) CD44, a therapeutic target for metastasising tumours. Eur J Cancer 46(7):1271–1277

    CAS  PubMed  Google Scholar 

  22. Ponta H, Sherman L, Herrlich PA (2003) CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4(1):33–45

    CAS  PubMed  Google Scholar 

  23. Naor D, Nedvetzki S, Golan I, Melnik L, Faitelson Y (2002) CD44 in cancer. Crit Rev Clin Lab Sci 39(6):527–579

    CAS  PubMed  Google Scholar 

  24. Heldin P, Basu K, Kozlova I, Porsch H (2014) Chapter eight - HAS2 and CD44 in breast tumorigenesis. In: Simpson MA, Heldin P (eds) Advances in cancer research. Academic Press, Cambridge, pp 211–229

    Google Scholar 

  25. Heldin P, Karousou E, Bernert B, Porsch H, Nishitsuka K, Skandalis SS (2008) Importance of hyaluronan-CD44 interactions in inflammation and tumorigenesis. Connect Tissue Res 49(3–4):215–218

    CAS  PubMed  Google Scholar 

  26. Wang L, Zuo X, Xie K, Wei D (2018) The role of CD44 and cancer stem cells. In: Papaccio G, Desiderio V (eds) Cancer stem cells: methods and protocols. Springer, New York, NY, pp 31–42

    Google Scholar 

  27. Greve B, Kelsch R, Spaniol K, Eich HT, Gotte M (2012) Flow cytometry in cancer stem cell analysis and separation. Cytometry A 81(4):284–293

    PubMed  Google Scholar 

  28. Couchman JR (2010) Transmembrane signaling proteoglycans. Annu Rev Cell Dev Biol 26:89–114

    CAS  PubMed  Google Scholar 

  29. Filmus J, Capurro M, Rast J (2008) Glypicans. Genome Biol 9(5):224

    PubMed  PubMed Central  Google Scholar 

  30. Piperigkou Z, Mohr B, Karamanos N, Götte M (2016) Shed proteoglycans in tumor stroma. Cell Tissue Res 365(3):643–655

    CAS  PubMed  Google Scholar 

  31. Rilla K, Mustonen AM, Arasu UT, Harkonen K, Matilainen J, Nieminen P (2017) Extracellular vesicles are integral and functional components of the extracellular matrix. Matrix Biol

    Google Scholar 

  32. Colombo M, Raposo G, Théry C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30(1):255–289

    CAS  PubMed  Google Scholar 

  33. Kalluri R (2016) The biology and function of exosomes in cancer. J Clin Invest 126(4):1208–1215

    PubMed  PubMed Central  Google Scholar 

  34. Yáñez-Mó M, Siljander PRM, Andreu Z, Bedina Zavec A, Borràs FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, Colás E, Cordeiro-da Silva A, Fais S, Falcon-Perez JM, Ghobrial IM, Giebel B, Gimona M, Graner M, Gursel I, Gursel M, Heegaard NHH, Hendrix A, Kierulf P, Kokubun K, Kosanovic M, Kralj-Iglic V, Krämer-Albers E-M, Laitinen S, Lässer C, Lener T, Ligeti E, Linē A, Lipps G, Llorente A, Lötvall J, Manček-Keber M, Marcilla A, Mittelbrunn M, Nazarenko I, Hoen ENM N-‘t, Nyman TA, O'Driscoll L, Olivan M, Oliveira C, Pállinger É, del Portillo HA, Reventós J, Rigau M, Rohde E, Sammar M, Sánchez-Madrid F, Santarém N, Schallmoser K, Stampe Ostenfeld M, Stoorvogel W, Stukelj R, Van der Grein SG, Helena Vasconcelos M, Wauben MHM, De Wever O (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4(1):27066

    PubMed  Google Scholar 

  35. Ricard-Blum S, Vallet SD (2017) Fragments generated upon extracellular matrix remodeling: biological regulators and potential drugs. Matrix Biol

    Google Scholar 

  36. Sanderson RD, Bandari SK, Vlodavsky I (2017) Proteases and glycosidases on the surface of exosomes: newly discovered mechanisms for extracellular remodeling. Matrix Biol

    Google Scholar 

  37. Davis MJ, Wu X, Nurkiewicz TR, Kawasaki J, Gui P, Hill MA, Wilson E (2002) Regulation of ion channels by integrins. Cell Biochem Biophys 36(1):41–66

    CAS  PubMed  Google Scholar 

  38. Vigetti D, Andrini O, Clerici M, Negrini D, Passi A, Moriondo A (2008) Chondroitin sulfates act as extracellular gating modifiers on voltage-dependent ion channels. Cell Physiol Biochem 22(1–4):137–146

    CAS  PubMed  Google Scholar 

  39. Fraser SP, Diss JK, Chioni AM, Mycielska ME, Pan H, Yamaci RF, Pani F, Siwy Z, Krasowska M, Grzywna Z, Brackenbury WJ, Theodorou D, Koyuturk M, Kaya H, Battaloglu E, De Bella MT, Slade MJ, Tolhurst R, Palmieri C, Jiang J, Latchman DS, Coombes RC, Djamgoz MB (2005) Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin Cancer Res 11(15):5381–5389

    CAS  PubMed  Google Scholar 

  40. Csoka AB, Stern R (2013) Hypotheses on the evolution of hyaluronan: a highly ironic acid. Glycobiology 23(4):398–411

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jiang D, Liang J, Noble PW (2011) Hyaluronan as an immune regulator in human diseases. Physiol Rev 91(1):221–264

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Filpa V, Bistoletti M, Caon I, Moro E, Grimaldi A, Moretto P, Baj A, Giron MC, Karousou E, Viola M, Crema F, Frigo G, Passi A, Giaroni C, Vigetti D (2017) Changes in hyaluronan deposition in the rat myenteric plexus after experimentally-induced colitis. Sci Rep 7(1):17644

    PubMed  PubMed Central  Google Scholar 

  43. Wang A, de la Motte C, Lauer M, Hascall V (2011) Hyaluronan matrices in pathobiological processes. FEBS J 278(9):1412–1418

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Petrey AC, de la Motte CA (2014) Hyaluronan, a crucial regulator of inflammation. Front Immunol 5:101

    PubMed  PubMed Central  Google Scholar 

  45. Stern R, Asari AA, Sugahara KN (2006) Hyaluronan fragments: an information-rich system. Eur J Cell Biol 85(8):699–715

    CAS  PubMed  Google Scholar 

  46. Cyphert JM, Trempus CS, Garantziotis S (2015) Size matters: molecular weight specificity of hyaluronan effects in cell biology. Int J Cell Biol 2015:563818

    PubMed  PubMed Central  Google Scholar 

  47. Milner CM, Tongsoongnoen W, Rugg MS, Day AJ (2007) The molecular basis of inter-alpha-inhibitor heavy chain transfer on to hyaluronan. Biochem Soc Trans 35(Pt 4):672–676

    CAS  PubMed  Google Scholar 

  48. Milner CM, Day AJ (2003) TSG-6: a multifunctional protein associated with inflammation. J Cell Sci 116(Pt 10):1863–1873

    CAS  PubMed  Google Scholar 

  49. Vigetti D, Karousou E, Viola M, Deleonibus S, De Luca G, Passi A (2014) Hyaluronan: biosynthesis and signaling. Biochim Biophys Acta 1840(8):2452–2459

    CAS  Google Scholar 

  50. Misra S, Hascall VC, Markwald RR, Ghatak S (2015) Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer. Front Immunol 6:201

    PubMed  PubMed Central  Google Scholar 

  51. Viola M, Vigetti D, Karousou E, D'Angelo ML, Caon I, Moretto P, De Luca G, Passi A (2015) Biology and biotechnology of hyaluronan. Glycoconj J 32(3–4):93–103

    CAS  PubMed  Google Scholar 

  52. Nagy N, de la Zerda A, Kaber G, Johnson PY, Hu KH, Kratochvil MJ, Yadava K, Zhao W, Cui Y, Navarro G, Annes JP, Wight TN, Heilshorn SC, Bollyky PL, Butte MJ (2018) Hyaluronan content governs tissue stiffness in pancreatic islet inflammation. J Biol Chem 293(2):567–578

    CAS  PubMed  Google Scholar 

  53. Vigetti D, Viola M, Karousou E, De Luca G, Passi A (2014) Metabolic control of hyaluronan synthases. Matrix Biol 35:8–13

    CAS  PubMed  Google Scholar 

  54. Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4(7):528–539

    CAS  PubMed  Google Scholar 

  55. Bi Y, Hubbard C, Purushotham P, Zimmer J (2015) Insights into the structure and function of membrane-integrated processive glycosyltransferases. Curr Opin Struct Biol 34:78–86

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Weigel PH, DeAngelis PL (2007) Hyaluronan synthases: a decade-plus of novel glycosyltransferases. J Biol Chem 282(51):36777–36781

    CAS  PubMed  Google Scholar 

  57. Vigetti D, Viola M, Karousou E, Deleonibus S, Karamanou K, De Luca G, Passi A (2014) Epigenetics in extracellular matrix remodeling and hyaluronan metabolism. FEBS J 281(22):4980–4992

    CAS  PubMed  Google Scholar 

  58. Wessels MR, Moses AE, Goldberg JB, DiCesare TJ (1991) Hyaluronic acid capsule is a virulence factor for mucoid group A streptococci. Proc Natl Acad Sci U S A 88(19):8317–8321

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Viola M, Karousou E, D'Angelo ML, Moretto P, Caon I, Luca G, Passi A, Vigetti D (2016) Extracellular matrix in atherosclerosis: hyaluronan and proteoglycans insights. Curr Med Chem 23(26):2958–2971

    CAS  PubMed  Google Scholar 

  60. Liu L, Xu YX, Hirschberg CB (2010) The role of nucleotide sugar transporters in development of eukaryotes. Semin Cell Dev Biol 21(6):600–608

    PubMed  PubMed Central  Google Scholar 

  61. Vigetti D, Rizzi M, Moretto P, Deleonibus S, Dreyfuss JM, Karousou E, Viola M, Clerici M, Hascall VC, Ramoni MF, De Luca G, Passi A (2011) Glycosaminoglycans and glucose prevent apoptosis in 4-methylumbelliferone-treated human aortic smooth muscle cells. J Biol Chem 286(40):34497–34503

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Vigetti D, Ori M, Viola M, Genasetti A, Karousou E, Rizzi M, Pallotti F, Nardi I, Hascall VC, De Luca G, Passi A (2006) Molecular cloning and characterization of UDP-glucose dehydrogenase from the amphibian Xenopus laevis and its involvement in hyaluronan synthesis. J Biol Chem 281(12):8254–8263

    CAS  PubMed  Google Scholar 

  63. Vigetti D, Deleonibus S, Moretto P, Karousou E, Viola M, Bartolini B, Hascall VC, Tammi M, De Luca G, Passi A (2012) Role of UDP-N-acetylglucosamine (GlcNAc) and O-GlcNAcylation of hyaluronan synthase 2 in the control of chondroitin sulfate and hyaluronan synthesis. J Biol Chem 287(42):35544–35555

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Vigetti D, Deleonibus S, Moretto P, Bowen T, Fischer JW, Grandoch M, Oberhuber A, Love DC, Hanover JA, Cinquetti R, Karousou E, Viola M, D'Angelo ML, Hascall VC, De Luca G, Passi A (2014) Natural antisense transcript for hyaluronan synthase 2 (HAS2-AS1) induces transcription of HAS2 via protein O-GlcNAcylation. J Biol Chem 289(42):28816–28826

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Stern R, Kogan G, Jedrzejas MJ, Soltes L (2007) The many ways to cleave hyaluronan. Biotechnol Adv 25(6):537–557

    CAS  PubMed  Google Scholar 

  66. Stern R, Jedrzejas MJ (2006) Hyaluronidases: their genomics, structures, and mechanisms of action. Chem Rev 106(3):818–839

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Yoshida H, Nagaoka A, Kusaka-Kikushima A, Tobiishi M, Kawabata K, Sayo T, Sakai S, Sugiyama Y, Enomoto H, Okada Y, Inoue S (2013) KIAA1199, a deafness gene of unknown function, is a new hyaluronan binding protein involved in hyaluronan depolymerization. Proc Natl Acad Sci U S A 110(14):5612–5617

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Day AJ, Prestwich GD (2002) Hyaluronan-binding proteins: tying up the giant. J Biol Chem 277(7):4585–4588

    CAS  PubMed  Google Scholar 

  69. Spinelli FM, Vitale DL, Demarchi G, Cristina C, Alaniz L (2015) The immunological effect of hyaluronan in tumor angiogenesis. Clin Transl Immunol 4(12):e52

    Google Scholar 

  70. Chanmee T, Ontong P, Itano N (2016) Hyaluronan: a modulator of the tumor microenvironment. Cancer Lett 375(1):20–30

    CAS  PubMed  Google Scholar 

  71. Cuff CA, Kothapalli D, Azonobi I, Chun S, Zhang Y, Belkin R, Yeh C, Secreto A, Assoian RK, Rader DJ, Pure E (2001) The adhesion receptor CD44 promotes atherosclerosis by mediating inflammatory cell recruitment and vascular cell activation. J Clin Invest 108(7):1031–1040

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Slevin M, Krupinski J, Gaffney J, Matou S, West D, Delisser H, Savani RC, Kumar S (2007) Hyaluronan-mediated angiogenesis in vascular disease: uncovering RHAMM and CD44 receptor signaling pathways. Matrix Biol 26(1):58–68

    CAS  PubMed  Google Scholar 

  73. Toole BP, Ghatak S, Misra S (2008) Hyaluronan oligosaccharides as a potential anticancer therapeutic. Curr Pharm Biotechnol 9(4):249–252

    CAS  PubMed  Google Scholar 

  74. Lauer ME, Mukhopadhyay D, Fulop C, de la Motte CA, Majors AK, Hascall VC (2009) Primary murine airway smooth muscle cells exposed to poly(I,C) or tunicamycin synthesize a leukocyte-adhesive hyaluronan matrix. J Biol Chem 284(8):5299–5312

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lauer ME, Majors AK, Comhair S, Ruple LM, Matuska B, Subramanian A, Farver C, Dworski R, Grandon D, Laskowski D, Dweik RA, Erzurum SC, Hascall VC, Aronica MA (2015) Hyaluronan and its heavy chain modification in asthma severity and experimental asthma exacerbation. J Biol Chem 290(38):23124–23134

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Fulop C, Szanto S, Mukhopadhyay D, Bardos T, Kamath RV, Rugg MS, Day AJ, Salustri A, Hascall VC, Glant TT, Mikecz K (2003) Impaired cumulus mucification and female sterility in tumor necrosis factor-induced protein-6 deficient mice. Development 130(10):2253–2261

    CAS  PubMed  Google Scholar 

  77. Rawlings ND, Barrett AJ, Bateman A (2010) MEROPS: the peptidase database. Nucleic Acids Res 38(suppl_1):D227–D233

    CAS  PubMed  Google Scholar 

  78. Gialeli C, Theocharis AD, Karamanos NK (2011) Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 278(1):16–27

    CAS  PubMed  Google Scholar 

  79. Piperigkou Z, Manou D, Karamanou K, Theocharis AD (2018) Strategies to target matrix metalloproteinases as therapeutic approach in cancer. Methods Mol Biol 1731:325–348

    CAS  PubMed  Google Scholar 

  80. Alaseem A, Alhazzani K, Dondapati P, Alobid S, Bishayee A, Rathinavelu A (2017) Matrix metalloproteinases: a challenging paradigm of cancer management. Semin Cancer Biol

    Google Scholar 

  81. Giebeler N, Zigrino P (2016) A disintegrin and metalloprotease (ADAM): historical overview of their functions. Toxins 8(4):122

    PubMed  PubMed Central  Google Scholar 

  82. Kelwick R, Desanlis I, Wheeler GN, Edwards DR (2015) The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family. Genome Biol 16(1):113

    PubMed  PubMed Central  Google Scholar 

  83. Law RHP, Abu-Ssaydeh D, Whisstock JC (2013) New insights into the structure and function of the plasminogen/plasmin system. Curr Opin Struct Biol 23(6):836–841

    CAS  PubMed  Google Scholar 

  84. Svineng G, Magnussen S, Hadler-Olsen E (2012) Plasmin and the plasminogen activator system in health and disease. Extracell Matrix:261–290

    Google Scholar 

  85. Kwaan HC, McMahon B (2009) The role of plasminogen-plasmin system in cancer. In: Kwaan HC, Green D (eds) Coagulation in cancer. Springer, Boston, MA, pp 43–66

    Google Scholar 

  86. Svineng G, Magnussen S, Hadler-Olsen E (2012) Plasmin and the plasminogen activator system in health and disease. In: Karamanos NK (ed) Extracellular matrix: pathobiology and signaling. Walter de Gruyter GmbH & Co. KG, Berlin/Boston

    Google Scholar 

  87. Mohamed MM, Sloane BF (2006) multifunctional enzymes in cancer. Nat Rev Cancer 6:764

    CAS  PubMed  Google Scholar 

  88. Olson OC, Joyce JA (2015) Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nat Rev Cancer 15(12):712–729

    CAS  PubMed  Google Scholar 

  89. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    CAS  PubMed  Google Scholar 

  90. Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15(12):786–801

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Rozario T, DeSimone DW (2010) The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 341(1):126–140

    CAS  PubMed  Google Scholar 

  92. Mithieux SM, Weiss AS (2005) Elastin. Adv Protein Chem 70:437–461

    CAS  PubMed  Google Scholar 

  93. Liu S, Young SM, Varisco BM (2014) Dynamic expression of chymotrypsin-like elastase 1 over the course of murine lung development. Am J Physiol Lung Cell Mol Physiol 306(12):L1104–L1116

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kessenbrock K, Dijkgraaf GJ, Lawson DA, Littlepage LE, Shahi P, Pieper U, Werb Z (2013) A role for matrix metalloproteinases in regulating mammary stem cell function via the Wnt signaling pathway. Cell Stem Cell 13(3):300–313

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Mori H, Lo AT, Inman JL, Alcaraz J, Ghajar CM, Mott JD, Nelson CM, Chen CS, Zhang H, Bascom JL, Seiki M, Bissell MJ (2013) Transmembrane/cytoplasmic, rather than catalytic, domains of Mmp14 signal to MAPK activation and mammary branching morphogenesis via binding to integrin beta1. Development 140(2):343–352

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Ahmed M, Ffrench-Constant C (2016) Extracellular matrix regulation of stem cell behavior. Curr Stem Cell Rep 2:197–206

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Ferraro F, Celso CL, Scadden D (2010) Adult stem cells and their niches. Adv Exp Med Biol 695:155–168

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Oskarsson T, Batlle E, Massague J (2014) Metastatic stem cells: sources, niches, and vital pathways. Cell Stem Cell 14(3):306–321

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Ye J, Wu D, Wu P, Chen Z, Huang J (2014) The cancer stem cell niche: cross talk between cancer stem cells and their microenvironment. Tumour Biol 35(5):3945–3951

    CAS  PubMed  Google Scholar 

  100. Plaks V, Kong N, Werb Z (2015) The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 16(3):225–238

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Nakaya Y, Sheng G (2013) EMT in developmental morphogenesis. Cancer Lett 341(1):9–15

    CAS  PubMed  Google Scholar 

  102. Hermann PC, Huber SL, Heeschen C (2008) Metastatic cancer stem cells: a new target for anti-cancer therapy? Cell Cycle 7(2):188–193

    CAS  PubMed  Google Scholar 

  103. Liao WT, Ye YP, Deng YJ, Bian XW, Ding YQ (2014) Metastatic cancer stem cells: from the concept to therapeutics. Am J Stem Cells 3(2):46–62

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Singh M, Yelle N, Venugopal C, Singh SK (2018) EMT: Mechanisms and therapeutic implications. Pharmacol Ther 182:80–94

    CAS  PubMed  Google Scholar 

  105. Tzanakakis G, Kavasi RM, Voudouri K, Berdiaki A, Spyridaki I, Tsatsakis A, Nikitovic D (2018) Role of the extracellular matrix in cancer-associated epithelial to mesenchymal transition phenomenon. Dev Dyn 247(3):368–381

    PubMed  Google Scholar 

  106. Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17(5):548–558

    CAS  PubMed  Google Scholar 

  107. Grotegut S, von Schweinitz D, Christofori G, Lehembre F (2006) Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J 25(15):3534–3545

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Tavares AL, Mercado-Pimentel ME, Runyan RB, Kitten GT (2006) TGF beta-mediated RhoA expression is necessary for epithelial-mesenchymal transition in the embryonic chick heart. Dev Dyn 235(6):1589–1598

    CAS  PubMed  Google Scholar 

  109. Ohsumi Y (2014) Historical landmarks of autophagy research. Cell Res 24(1):9–23

    CAS  PubMed  Google Scholar 

  110. Grumati P, Bonaldo P (2012) Autophagy in skeletal muscle homeostasis and in muscular dystrophies. Cell 1(3)

    Google Scholar 

  111. Neill T, Painter H, Buraschi S, Owens RT, Lisanti MP, Schaefer L, Iozzo RV (2012) Decorin antagonizes the angiogenic network: concurrent inhibition of Met, hypoxia inducible factor 1alpha, vascular endothelial growth factor A, and induction of thrombospondin-1 and TIMP3. J Biol Chem 287(8):5492–5506

    CAS  PubMed  Google Scholar 

  112. Neill T, Holly RJ, Crane-Smith Z, Owens Rick T, Schaefer L, Renato VI (2013) Decorin induces rapid secretion of thrombospondin-1 in basal breast carcinoma cells via inhibition of Ras homolog gene family, member A/Rho-associated coiled-coil containing protein kinase 1. FEBS J 280(10):2353–2368

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Neill T, Sharpe C, Owens RT, Iozzo RV (2017) Decorin-evoked paternally expressed gene 3 (PEG3) is an upstream regulator of the transcription factor EB (TFEB) in endothelial cell autophagy. J Biol Chem 292(39):16211–16220

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Schaefer L, Tredup C, Gubbiotti MA, Iozzo RV (2017) Proteoglycan neofunctions: regulation of inflammation and autophagy in cancer biology. FEBS J 284(1):10–26

    CAS  PubMed  Google Scholar 

  115. Neill T, Schaefer L, Iozzo RV (2012) Decorin: a Guardian from the Matrix. Am J Pathol 181(2):380–387

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Nanda A, Carson-Walter EB, Seaman S, Barber TD, Stampfl J, Singh S, Vogelstein B, Kinzler KW, St. Croix B (2004) TEM8 interacts with the cleaved C5 domain of collagen α3(VI). Cancer Res 64(3):817

    CAS  PubMed  Google Scholar 

  117. Chau YP, Lin SY, Chen JHC, Tai MH (2003) Endostatin induces autophagic cell death in EAhy926 human endothelial cells. Histol Histopathol 18(3):715–726

    CAS  PubMed  Google Scholar 

  118. Nguyen Tri Minh B, Subramanian Indira V, Xiao X, Ghosh G, Nguyen P, Kelekar A, Ramakrishnan S (2009) Endostatin induces autophagy in endothelial cells by modulating Beclin 1 and β-catenin levels. J Cell Mol Med 13(9b):3687–3698

    PubMed  PubMed Central  Google Scholar 

  119. Mongiat M, Sweeney SM, San Antonio JD, Fu J, Iozzo RV (2003) Endorepellin, a novel inhibitor of angiogenesis derived from the C terminus of perlecan. J Biol Chem 278(6):4238–4249

    CAS  PubMed  Google Scholar 

  120. Neve A, Cantatore FP, Maruotti N, Corrado A, Ribatti D (2014) Extracellular matrix modulates angiogenesis in physiological and pathological conditions. Biomed Res Int 2014:10

    Google Scholar 

  121. Sottile J (2004) Regulation of angiogenesis by extracellular matrix. Biochim Biophys Acta 1654(1):13–22

    CAS  PubMed  Google Scholar 

  122. Pantazaka E, Papadimitriou E (2014) Chondroitin sulfate-cell membrane effectors as regulators of growth factor-mediated vascular and cancer cell migration. Biochim Biophys Acta 1840(8):2643–2650

    CAS  PubMed  Google Scholar 

  123. Poluzzi C, Iozzo RV, Schaefer L (2016) Endostatin and endorepellin: A common route of action for similar angiostatic cancer avengers. Adv Drug Deliv Rev 97:156–173

    CAS  PubMed  Google Scholar 

  124. Douglass S, Goyal A, Iozzo RV (2015) The role of perlecan and endorepellin in the control of tumor angiogenesis and endothelial cell autophagy. Connect Tissue Res 56(5):381–391

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Davide Vigetti or Achilleas D. Theocharis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Manou, D. et al. (2019). The Complex Interplay Between Extracellular Matrix and Cells in Tissues. In: Vigetti, D., Theocharis, A.D. (eds) The Extracellular Matrix. Methods in Molecular Biology, vol 1952. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9133-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9133-4_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9132-7

  • Online ISBN: 978-1-4939-9133-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics