Expression and Purification of a Functional E. coli13CH3-Methionine-Labeled Thermostable Neurotensin Receptor 1 Variant for Solution NMR Studies

  • Fabian Bumbak
  • Ross A. D. Bathgate
  • Daniel J. Scott
  • Paul R. GooleyEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1947)


Escherichia coli (E. coli) is the most widely used expression host for recombinant proteins due to high expression yields and straightforward molecular cloning. Directed evolution of G protein-coupled receptors (GPCRs) has made several of these difficult to express membrane proteins amenable to prokaryotic expression. Here, we describe a protocol for near complete 13CH3-methionine labeling of a thermostable neurotensin receptor 1 (enNTS1) variant in E. coli for solution NMR-based dynamics studies. Our expression strategy utilizes methionine biosynthesis pathway inhibition forcing E. coli to incorporate exogenous methionine with 96% efficiency at expression levels of 2.6 mg enNTS1 per liter of expression culture containing 50 mg of 13CH3-methionine. We also provide a 3-step purification protocol that produces final yields of 0.6 mg of functional Apo-state enNTS1.

Key words

Membrane protein GPCR Neurotensin receptor 1 Thermostable E. coli 13CH3-methionine Apo-state 



This work was supported by NHMRC project grants 1081801 (D.J.S.) and 1081844 (R.A.D.B., P.R.G., D.J.S.); ARC equipment grant LE120100022. D.J.S. is an NHMRC Boosting Dementia Research Leadership Fellow. R.A.D.B. is an NHMRC Senior Research Fellow. Studies at The Florey Institute of Neuroscience and Mental Health were supported by the Victorian Government’s Operational Infrastructure Support Program.


  1. 1.
    Hauser AS, Attwood MM, Rask-Andersen M et al (2017) Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 16:829–842CrossRefGoogle Scholar
  2. 2.
    Grisshammer R (2017) New approaches towards the understanding of integral membrane proteins – A structural perspective on G protein-coupled receptors. Protein Sci 26:1493–1504CrossRefGoogle Scholar
  3. 3.
    Maeda S, Schertler GF (2013) Production of GPCR and GPCR complexes for structure determination. Curr Opin Struct Biol 23:381–392CrossRefGoogle Scholar
  4. 4.
    Verardi R, Traaseth NJ, Masterson LR et al (2012) Isotope labeling for solution and solid-state NMR spectroscopy of membrane proteins. Adv Exp Med Biol 992:35–62CrossRefGoogle Scholar
  5. 5.
    Foster MP, Mcelroy CA, Amero CD (2007) Solution NMR of large molecules and assemblies. Biochemistry 46:331–340CrossRefGoogle Scholar
  6. 6.
    Didenko T, Liu JJ, Horst R et al (2013) Fluorine-19 NMR of integral membrane proteins illustrated with studies of GPCRs. Curr Opin Struct Biol 23:740–747CrossRefGoogle Scholar
  7. 7.
    Klein-Seetharaman J, Getmanova EV, Loewen MC et al (1999) NMR spectroscopy in studies of light-induced structural changes in mammalian rhodopsin: applicability of solution 19F NMR. Proc Natl Acad Sci U S A 96:13744–13749CrossRefGoogle Scholar
  8. 8.
    Loewen MC, Klein-Seetharaman J, Getmanova EV et al (2001) Solution 19F nuclear Overhauser effects in structural studies of the cytoplasmic domain of mammalian rhodopsin. Proc Natl Acad Sci U S A 98:4888–4892CrossRefGoogle Scholar
  9. 9.
    Kim TH, Chung KY, Manglik A et al (2013) The role of ligands on the equilibria between functional states of a G protein-coupled receptor. J Am Chem Soc 135:9465–9474CrossRefGoogle Scholar
  10. 10.
    Liu JJ, Horst R, Katritch V et al (2012) Biased signaling pathways in beta2-adrenergic receptor characterized by 19F-NMR. Science 335:1106–1110CrossRefGoogle Scholar
  11. 11.
    Manglik A, Kim TH, Masureel M et al (2015) Structural insights into the dynamic process of β2-adrenergic receptor signaling. Cell 161:1101–1111CrossRefGoogle Scholar
  12. 12.
    Ye L, Van Eps N, Zimmer M et al (2016) Activation of the A2A adenosine G-protein-coupled receptor by conformational selection. Nature 533:265–268CrossRefGoogle Scholar
  13. 13.
    Tugarinov V, Ollerenshaw JE, Kay LE (2005) Probing side-chain dynamics in high molecular weight proteins by deuterium NMR spin relaxation: an application to an 82-kDa enzyme. J Am Chem Soc 127:8214–8225CrossRefGoogle Scholar
  14. 14.
    Ruschak AM, Kay LE (2010) Methyl groups as probes of supra-molecular structure, dynamics and function. J Biomol NMR 46:75–87CrossRefGoogle Scholar
  15. 15.
    Kofuku Y, Ueda T, Okude J et al (2012) Efficacy of the b2-adrenergic receptor is determined by conformational equilibrium in the transmembrane region. Nat Commun 3:1045CrossRefGoogle Scholar
  16. 16.
    Nygaard R, Zou Y, Dror RO et al (2013) The dynamic process of beta(2)-adrenergic receptor activation. Cell 152:532–542CrossRefGoogle Scholar
  17. 17.
    Prosser RS, Kim T (2015) Nuts and bolts of CF3 and CH3 NMR toward the understanding of conformational exchange of GPCRs. Methods Mol Biol 1335:39–51CrossRefGoogle Scholar
  18. 18.
    Duewel H, Daub E, Robinson V et al (1997) Incorporation of trifluoromethionine into a phage lysozyme: Implications and a new marker for use in protein 19F NMR. Biochemistry 36:3404–3416CrossRefGoogle Scholar
  19. 19.
    Gellman SH (1991) On the role of methionine residues in the sequence-independent recognition of nonpolar protein surfaces. Biochemistry 30:6633–6636CrossRefGoogle Scholar
  20. 20.
    Dellavecchia MJ, Merritt WK, Peng Y et al (2007) NMR analysis of [methyl-13C]methionine UvrB from Bacillus caldotenax reveals UvrB-domain 4 heterodimer formation in solution. J Mol Biol 373:282–295CrossRefGoogle Scholar
  21. 21.
    Bose-Basu B, Derose EF, Kirby TW et al (2004) Dynamic characterization of a DNA repair enzyme: NMR studies of [methyl-13C]methionine-labeled DNA polymerase beta. Biochemistry 43:8911–8922CrossRefGoogle Scholar
  22. 22.
    Okude J, Ueda T, Kofuku Y et al (2015) Identification of a conformational equilibrium that determines the efficacy and functional selectivity of the μ-opioid receptor. Angew Chem Int Ed Engl 54:15771–15776CrossRefGoogle Scholar
  23. 23.
    Solt AS, Bostock MJ, Shrestha B et al (2017) Insight into partial agonism by observing multiple equilibria for ligand-bound and Gs-mimetic nanobody-bound β1-adrenergic receptor. Nat Commun 8:1795CrossRefGoogle Scholar
  24. 24.
    Isogai S, Deupi X, Opitz C et al (2016) Backbone NMR reveals allosteric signal transduction networks in the β1-adrenergic receptor. Nature 530:237–241CrossRefGoogle Scholar
  25. 25.
    Clark LD, Dikiy I, Chapman K et al (2017) Ligand modulation of sidechain dynamics in a wild-type human GPCR. elife 6:e28505CrossRefGoogle Scholar
  26. 26.
    Bokoch MP, Zou Y, Rasmussen SG et al (2010) Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature 463:108–112CrossRefGoogle Scholar
  27. 27.
    Sounier R, Mas C, Steyaert J et al (2015) Propagation of conformational changes during m-opioid receptor activation. Nature 524:375–378CrossRefGoogle Scholar
  28. 28.
    Bumbak F, Keen AC, Gunn NJ et al (2018) Optimization and 13CH3 methionine labeling of a signaling competent neurotensin receptor 1 variant for NMR studies. Biochim Biophys Acta 1860:1372–1383CrossRefGoogle Scholar
  29. 29.
    Doublie S, Kapp U, Aberg A et al (1996) Crystallization and preliminary X-ray analysis of the 9 kDa protein of the mouse signal recognition particle and the selenomethionyl-SRP9. FEBS Lett 384:219–221CrossRefGoogle Scholar
  30. 30.
    Van Duyne GD, Standaert RF, Karplus PA et al (1993) Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J Mol Biol 229:105–124CrossRefGoogle Scholar
  31. 31.
    Schlegel S, Hjelm A, Baumgarten T et al (2013) Bacterial-based membrane protein production. Biochim Biophys Acta 1843:1739–1749CrossRefGoogle Scholar
  32. 32.
    Grisshammer R, Tate CG (1995) Overexpression of integral membrane proteins for structural studies. Q Rev Biophys 28:315–422CrossRefGoogle Scholar
  33. 33.
    Tucker J, Grisshammer R (1996) Purification of a rat neurotensin receptor expressed in Escherichia coli. Biochem J 317:891–899CrossRefGoogle Scholar
  34. 34.
    Weiss HM, Grisshammer R (2002) Purification and characterization of the human adenosine A(2a) receptor functionally expressed in Escherichia coli. Eur J Biochem 269:82–92CrossRefGoogle Scholar
  35. 35.
    Marullo S, Delavier-Klutchko C, Guillet J-G et al (1989) Expression of human [beta]1 and [beta]2 adrenergic receptors in E. Coli as a new tool for ligand screening. Nat Biotechnol 7:923–927CrossRefGoogle Scholar
  36. 36.
    Ge B, Wang M, Li J et al (2014) Maltose binding protein facilitates functional production of engineered human chemokine receptor 3 in Escherichia coli. Process Biochem 50:285–293CrossRefGoogle Scholar
  37. 37.
    Ren H, Yu D, Ge B et al (2009) High-level production, solubilization and purification of synthetic human GPCR chemokine receptors CCR5, CCR3, CXCR4 and CX3CR1. PLoS One 4:e4509CrossRefGoogle Scholar
  38. 38.
    Wiktor M, Morin S, Sass HJ et al (2013) Biophysical and structural investigation of bacterially expressed and engineered CCR5, a G protein-coupled receptor. J Biomol NMR 55:79–95CrossRefGoogle Scholar
  39. 39.
    Bertin B, Freissmuth M, Breyer RM et al (1992) Functional expression of the human serotonin 5-Ht1a receptor in Escherichia coli. Ligand-binding properties and interaction with recombinant G-protein alpha-subunits. J Biol Chem 267:8200–8206PubMedGoogle Scholar
  40. 40.
    Furukawa H, Haga T (2000) Expression of functional M2 muscarinic acetylcholine receptor in Escherichia coli. J Biochem 127:151–161CrossRefGoogle Scholar
  41. 41.
    Link AJ, Skretas G, Strauch EM et al (2008) Efficient production of membrane-integrated and detergent-soluble G protein-coupled receptors in Escherichia coli. Protein Sci 17:1857–1863CrossRefGoogle Scholar
  42. 42.
    Locatelli-Hoops S, Sheen FC, Zoubak L et al (2013) Application of halotag technology to expression and purification of cannabinoid receptor CB. Protein Expr Purif 89:62–72CrossRefGoogle Scholar
  43. 43.
    Ma Y, Kubicek J, Labahn J (2013) Expression and purification of functional human Mu opioid receptor from E.coli. PLoS One 8:e56500CrossRefGoogle Scholar
  44. 44.
    Egloff P, Hillenbrand M, Klenk C et al (2014) Structure of signaling-competent neurotensin receptor 1 obtained by directed evolution in Escherichia coli. Proc Natl Acad Sci U S A 111:E655–E662CrossRefGoogle Scholar
  45. 45.
    Scott DJ, Pluckthun A (2013) Direct molecular evolution of detergent-stable g protein-coupled receptors using polymer encapsulated cells. J Mol Biol 425:662–677CrossRefGoogle Scholar
  46. 46.
    Scott DJ, Kummer L, Egloff P et al (2014) Improving the apo-state detergent stability of NTS1 with CHESS for pharmacological and structural studies. Biochim Biophys Acta 1838:2817–2824CrossRefGoogle Scholar
  47. 47.
    White JF, Trinh LB, Shiloach J et al (2004) Automated large-scale purification of a G protein-coupled receptor for neurotensin. FEBS Lett 564:289–293CrossRefGoogle Scholar
  48. 48.
    Gelis I, Bonvin AMJJ, Keramisanou D et al (2007) Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131:756–769CrossRefGoogle Scholar
  49. 49.
    Stadtman ER, Cohen GN, Lebras G (1961) Feedback inhibition and repression of aspartokinase activity in Escherichia coli. Ann N Y Acad Sci 94:952–959CrossRefGoogle Scholar
  50. 50.
    Walden H (2010) Selenium incorporation using recombinant techniques. Acta Crystallogr D Biol Crystallogr 66:352–357CrossRefGoogle Scholar
  51. 51.
    Wu BL, Chien EYT, Mol CD et al (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330:1066–1071CrossRefGoogle Scholar
  52. 52.
    Wu H, Wacker D, Mileni M et al (2012) Structure of the human k-opioid receptor in complex with JDTic. Nature 485:327–332CrossRefGoogle Scholar
  53. 53.
    Zhang H, Qiao A, Yang D et al (2017) Structure of the full-length glucagon class B G-protein-coupled receptor. Nature 546:259–264CrossRefGoogle Scholar
  54. 54.
    Zhang J, Zhang K, Gao ZG et al (2014) Agonist-bound structure of the human P2Y12 receptor. Nature 509:119–122CrossRefGoogle Scholar
  55. 55.
    Zhang K, Zhang J, Gao Z-G et al (2014) Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature 509:115–118CrossRefGoogle Scholar
  56. 56.
    Wang C, Wu H, Katritch V et al (2013) Structure of the human smoothened receptor bound to an antitumour agent. Nature 497:338–343CrossRefGoogle Scholar
  57. 57.
    Wang C, Wu H, Evron T et al (2014) Structural basis for Smoothened receptor modulation and chemoresistance to anticancer drugs. Nat Commun 5:4355CrossRefGoogle Scholar
  58. 58.
    Wang C, Jiang Y, Ma J et al (2013) Structural basis for molecular recognition at serotonin receptors. Science 340:610–614CrossRefGoogle Scholar
  59. 59.
    Wacker D, Wang S, Mccorvy JD et al (2017) Crystal structure of an LSD-bound human serotonin receptor. Cell 168:377–389.e312CrossRefGoogle Scholar
  60. 60.
    Egloff P, Deluigi M, Heine P et al (2014) A cleavable ligand column for the rapidisolation of large quantities of homogeneous and functional neurotensin receptor 1 variants from E. coli. Protein Expr Purif 108:106–114CrossRefGoogle Scholar
  61. 61.
    Ballesteros JA, Weinstein H (1995) [19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. In: Stuart CS (ed) Methods in neurosciences. Academic Press, San Diego, pp 366–428Google Scholar
  62. 62.
    Rovati GE, Capra V, Neubig RR (2007) The highly conserved DRY motif of class A G protein-coupled receptors: beyond the ground state. Mol Pharmacol 71:959–964CrossRefGoogle Scholar
  63. 63.
    Labbe-Jullie C, Barroso S, Nicolas-Eteve D et al (1998) Mutagenesis and modeling of the neurotensin receptor NTR1. Identification of residues that are critical for binding SR 48692, a nonpeptide neurotensin antagonist. J Biol Chem 273:16351–16357CrossRefGoogle Scholar
  64. 64.
    Barroso S, Richard F, Nicolas-Etheve D et al (2000) Identification of residues involved in neurotensin binding and modeling of the agonist binding site in neurotensin receptor 1. J Biol Chem 275:328–336CrossRefGoogle Scholar
  65. 65.
    White JF, Noinaj N, Shibata Y et al (2012) Structure of the agonist-bound neurotensin receptor. Nature 490:508–513CrossRefGoogle Scholar
  66. 66.
    Scott DJ, Gunn NJ, Yong KJ et al (2018) A novel ultra-stable, monomeric green fluorescent protein for direct volumetric imaging of whole organs using clarity. Sci Rep 8:667CrossRefGoogle Scholar
  67. 67.
    Huber S, Casagrande F, Hug MN et al (2017) SPR-based fragment screening with neurotensin receptor 1 generates novel small molecule ligands. PLoS One 12:e0175842CrossRefGoogle Scholar
  68. 68.
    Ranganathan A, Heine P, Rudling A et al (2016) Ligand discovery for a peptide-binding GPCR by structure-based screening of fragment- and lead-like chemical libraries. ACS Chem Biol 12:735–745CrossRefGoogle Scholar
  69. 69.
    Cai M, Huang Y, Sakaguchi K et al (1998) An efficient and cost-effective isotope labeling protocol for proteins expressed in Escherichia coli. J Biomol NMR 11:97–102CrossRefGoogle Scholar
  70. 70.
    Yong KJ, Vaid TM, Shilling PJ et al (2018) Determinants of Ligand subtype-selectivity at alpha1A-adrenoceptor revealed using saturation transfer difference (STD) NMR. ACS Chem Biol 13:1090–1102CrossRefGoogle Scholar
  71. 71.
    Rial DV, Ceccarelli EA (2002) Removal of DnaK contamination during fusion protein purifications. Protein Expr Purif 25:503–507CrossRefGoogle Scholar
  72. 72.
    Wang QM, Johnson RB (2001) Activation of human rhinovirus-14 3C protease. Virology 280:80–86CrossRefGoogle Scholar
  73. 73.
    Vanaken T, Foxall-Vanaken S, Castleman S et al (1986) Alkyl glycoside detergents: synthesis and applications to the study of membrane proteins. Methods Enzymol 125:27–35CrossRefGoogle Scholar
  74. 74.
    Schaffner W, Weissmann C (1973) A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem 56:502–514CrossRefGoogle Scholar
  75. 75.
    Kaplan RS, Pedersen PL (1985) Determination of microgram quantities of protein in the presence of milligram levels of lipid with amido black 10B. Anal Biochem 150:97–104CrossRefGoogle Scholar
  76. 76.
    Sapan CV, Lundblad RL (2015) Review of methods for determination of total protein and peptide concentration in biological samples. Proteomics Clin Appl 9:268–276CrossRefGoogle Scholar
  77. 77.
    Grisshammer R, Duckworth R, Henderson R (1993) Expression of a rat neurotensin receptor in Escherichia coli. Biochem J 295:571–576CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fabian Bumbak
    • 1
    • 2
    • 3
  • Ross A. D. Bathgate
    • 1
    • 3
  • Daniel J. Scott
    • 1
    • 3
  • Paul R. Gooley
    • 1
    • 2
    Email author
  1. 1.Department of Biochemistry and Molecular BiologyThe University of MelbourneParkvilleAustralia
  2. 2.Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleAustralia
  3. 3.The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleAustralia

Personalised recommendations