Skip to main content

Measuring GPCR-Induced Activation of Protein Tyrosine Phosphatases (PTP) Using In-Gel and Colorimetric PTP Assays

  • Protocol
  • First Online:
G Protein-Coupled Receptor Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1947))

Abstract

Given the increasing amount of data showing the importance of protein tyrosine phosphatases (PTPs) in G protein-coupled receptor (GPCR) signaling pathways, the modulation of this enzyme family by that type of receptor can become an important experimental question. Here, we describe two different methods, an in-gel and a colorimetric PTP assay, to evaluate the modulation of PTP activity after stimulation with GPCR agonists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prabakaran S, Lippens G, Steen H et al (2012) Post-translational modification: nature’s escape from genetic imprisonment and the basis for dynamic information encoding. Wiley Interdiscip Rev Syst Biol Med 4:565–583

    Article  CAS  Google Scholar 

  2. Attwood PV (2013) Histidine kinases from bacteria to humans. Biochem Soc Trans 41:1023–1028

    Article  CAS  Google Scholar 

  3. den HJ (2003) Regulation of protein phosphatases in disease and behaviour. EMBO Rep 4:1027–1032

    Article  Google Scholar 

  4. Allen KN, Dunaway-Mariano D (2004) Phosphoryl group transfer: evolution of a catalytic scaffold. Trends Biochem Sci 29:495–503

    Article  CAS  Google Scholar 

  5. Patterson KI, Brummer T, O’brien PM et al (2009) Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem J 418:475–489

    Article  CAS  Google Scholar 

  6. Tonks NK (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol 7:833–846

    Article  CAS  Google Scholar 

  7. Pao LI, Badour K, Siminovitch KA et al (2007) Nonreceptor protein-tyrosine phosphatases in immune cell signaling. Annu Rev Immunol 25:473–523

    Article  CAS  Google Scholar 

  8. Tonks NK (2013) Protein tyrosine phosphatases: from housekeeping enzymes to master-regulators of signal transduction. FEBS J 280:346–378

    Article  CAS  Google Scholar 

  9. Kang N-I, Yoon H-Y, Kim H-A et al (2011) Protein kinase CK2/PTEN pathway plays a key role in platelet-activating factor-mediated murine anaphylactic shock. J Immunol 186:6625–6632

    Article  CAS  Google Scholar 

  10. Kim H-A, Kim K-J, Seo KH et al (2012) PTEN/MAPK pathways play a key role in platelet-activating factor-induced experimental pulmonary tumor metastasis. FEBS Lett 586:4296–4302

    Article  CAS  Google Scholar 

  11. Ni Y, Sinnett-Smith J, Young SH et al (2013) PKD1 mediates negative feedback of PI3K/Akt activation in response to G protein-coupled receptors. PLoS One 8:e73149

    Article  CAS  Google Scholar 

  12. Lapointe F, Stiffel M, Auger J-P et al (2015) Platelet-activating factor induces du-al-specificity phosphatase 1 and 5 gene expression. Pharmacol Pharm 6:442–450

    Article  CAS  Google Scholar 

  13. Suen JY, Gardiner B, Grimmond S et al (2010) Profiling gene expression induced by protease-activated receptor 2 (PAR2) activation in human kidney cells. PLoS One 5:e13809

    Article  Google Scholar 

  14. Mancini AD, Battista JAD (2011) The cardinal role of the phospholipase A2/cyclooxygenase-2/prostaglandin E synthase/prostaglandin E2 (PCPP) axis in inflammostasis. Inflamm Res 60:1083–1092

    Article  CAS  Google Scholar 

  15. Venema RC, Venema VJ, Eaton DC et al (1998) Angiotensin II-induced tyrosine phosphorylation of signal transducers and activators of transcription 1 is regulated by Janus-activated kinase 2 and Fyn kinases and mitogen-activated protein kinase phosphatase 1. J Biol Chem 273:30795–30800

    Article  CAS  Google Scholar 

  16. Willoughby EA, Collins MK (2005) Dynamic interaction between the dual specificity phosphatase MKP7 and the JNK3 scaffold protein β-arrestin 2. J Biol Chem 280:25651–25658

    Article  CAS  Google Scholar 

  17. Xu Y, Fisher GJ (2012) Receptor type protein tyrosine phosphatases (RPTPs) – roles in signal transduction and human disease. J Cell Commun Signal 6:125–138

    Article  CAS  Google Scholar 

  18. Nunes-Xavier CE, Martín-Pérez J, Elson A et al (2013) Protein tyrosine phosphatases as novel targets in breast cancer therapy. Biochim Biophys Acta 1836:211–226

    CAS  PubMed  Google Scholar 

  19. Zhu JW, Doan K, Park J et al (2011) Receptor-like tyrosine phosphatases CD45 and CD148 have distinct functions in chemoattractant-mediated neutrophil migration and response to S. aureus. Immunity 35:757–769

    Article  CAS  Google Scholar 

  20. Lee J-H, Choi S-H, Lee B-H et al (2013) Activation of lysophosphatidic acid receptor by gintonin inhibits Kv1.2 channel activity: involvement of tyrosine kinase and receptor protein tyrosine phosphatase α. Neurosci Lett 548:143–148

    Article  CAS  Google Scholar 

  21. Imbrici P, Tucker SJ, D’Adamo MC et al (2000) Role of receptor protein tyrosine phosphatase alpha (RPTPalpha) and tyrosine phosphorylation in the serotonergic inhibition of voltage-dependent potassium channels. Pflugers Arch 441:257–262

    Article  CAS  Google Scholar 

  22. Tsai W, Morielli AD, Cachero TG et al (1999) Receptor protein tyrosine phosphatase alpha participates in the m1 muscarinic acetylcholine receptor-dependent regulation of Kv1.2 channel activity. EMBO J 18:109–118

    Article  CAS  Google Scholar 

  23. Chernock RD, Cherla RP, RK G (2001) SHP2 and cbl participate in alpha-chemokine receptor CXCR4-mediated signaling pathways. Blood 97:608–615

    Article  CAS  Google Scholar 

  24. Vila-Coro AJ, Rodríguez-Frade JM, Martín De Ana A et al (1999) The chemokine SDF-1alpha triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB 13:1699–1710

    Article  CAS  Google Scholar 

  25. Lodeiro M, Theodoropoulou M, Pardo M et al (2009) c-Src Regulates Akt Signaling in Response to Ghrelin via β-Arrestin Signaling-Independent and -Dependent Mechanisms. PLoS ONE 4:e4686

    Article  Google Scholar 

  26. Lodeiro M, Alén BO, Mosteiro CS et al (2011) The SHP-1 protein tyrosine phosphatase negatively modulates Akt signaling in the ghrelin/GHSR1a system. Mol Biol Cell 22:4182–4191

    Article  CAS  Google Scholar 

  27. Hamel-Côté G, Gendron D, Rola-Pleszczynski M et al (2017) Regulation of platelet-activating factor-mediated protein tyrosine phosphatase 1B activation by a Janus kinase 2/calpain pathway. PLoS One 12:e0180336

    Article  Google Scholar 

  28. Shen Y, Schneider G, Cloutier JF et al (1998) Direct association of protein-tyrosine phosphatase PTP-PEST with paxillin. J Biol Chem 273:6474–6481

    Article  CAS  Google Scholar 

  29. Kappert K, Peters KG, Böhmer FD et al (2005) Tyrosine phosphatases in vessel wall signaling. Cardiovasc Res 65:587–598

    Article  CAS  Google Scholar 

  30. Meng T-C, Hsu S-F, NK T (2005) Development of a modified in-gel assay to identify protein tyrosine phosphatases that are oxidized and inactivated in vivo. Methods 35:28–36

    Article  CAS  Google Scholar 

  31. Burridge K, Nelson A (1995) An in-gel assay for protein tyrosine phosphatase activity: detection of widespread distribution in cells and tissues. Anal Biochem 232:56–64

    Article  CAS  Google Scholar 

  32. Haase H, Maret W (2003) Intracellular zinc fluctuations modulate protein tyrosine phosphatase activity in insulin/insulin-like growth factor-1 signaling. Exp Cell Res 291:289–298

    Article  CAS  Google Scholar 

  33. Bellomo E, Birla KS, Massarotti A et al (2016) The metal face of protein tyrosine phosphatase 1B., The metal face of protein tyrosine phosphatase 1B. Coord Chem Rev 327–328:70–83

    Article  Google Scholar 

  34. Huyer G, Liu S, Kelly J et al (1997) Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J Biol Chem 272:843–851

    Article  CAS  Google Scholar 

  35. Markova B, Gulati P, Herrlich PA et al (2005) Investigation of protein-tyrosine phosphatases by in-gel assays. Methods 35:22–27

    Article  CAS  Google Scholar 

  36. Hallé M, Liu Y-C, Hardy S et al (2007) Caspase-3 Regulates catalytic activity and scaffolding functions of the protein tyrosine phosphatase PEST, a novel modulator of the apoptotic response. Mol Cell Biol 27:1172–1190

    Article  Google Scholar 

  37. Walker JM (1996) The protein protocols handbook. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  38. Kameshita I, Ishida A, Okuno S et al (1997) Detection of protein phosphatase activities in sodium dodecyl sulfate-polyacrylamide gel using peptide substrates. Anal Biochem 245:149–153

    Article  CAS  Google Scholar 

  39. Kameshita I, Baba H, Umeda Y et al (2010) In-gel protein phosphatase assay using fluorogenic substrates. Anal Biochem 400:118–122

    Article  CAS  Google Scholar 

  40. Heneberg P, Dráberová L, Bambousková M et al (2010) Down-regulation of protein-tyrosine phosphatases activates an immune receptor in the absence of its translocation into lipid rafts. J Biol Chem 285:12787–12802

    Article  CAS  Google Scholar 

  41. McCain DF, Zhang Z-Y (2002) Assays for protein-tyrosine phosphatases. Methods Enzymol 345:507–518

    Article  Google Scholar 

  42. Lorenz U (2011) Protein tyrosine phosphatase assays. Curr Protoc Immunol 11:Unit 11.7

    PubMed  Google Scholar 

  43. Yan JX, Wait R, Berkelman T et al (2000) A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 21:3666–3672

    Article  CAS  Google Scholar 

  44. Zhang M, Yogesha SD, Mayfield JE et al (2013) Viewing serine/threonine protein phosphatases through the eyes of drug designers. FEBS J 280:4739–4760

    Article  CAS  Google Scholar 

  45. Lim W, Mayer B, Pawson T (2014) Cell signaling: principles and mechanisms. Taylor & Francis, Routledge

    Google Scholar 

  46. Montalibet J, Skorey KI, BP K (2005) Protein tyrosine phosphatase: enzymatic assays. Methods 35:2–8

    Article  CAS  Google Scholar 

  47. Mercan F, Bennett AM (2010) Analysis of protein tyrosine phosphatases and substrates. Curr Protoc Mol Biol Chapter 18:Unit 18.16

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Canadian Institutes of Health Research grant (#MT6822).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Stankova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hamel-Côté, G., Lapointe, F., Stankova, J. (2019). Measuring GPCR-Induced Activation of Protein Tyrosine Phosphatases (PTP) Using In-Gel and Colorimetric PTP Assays. In: Tiberi, M. (eds) G Protein-Coupled Receptor Signaling. Methods in Molecular Biology, vol 1947. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9121-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9121-1_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9120-4

  • Online ISBN: 978-1-4939-9121-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics