Measuring GPCR-Induced Activation of Protein Tyrosine Phosphatases (PTP) Using In-Gel and Colorimetric PTP Assays

  • Geneviève Hamel-Côté
  • Fanny Lapointe
  • Jana StankovaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1947)


Given the increasing amount of data showing the importance of protein tyrosine phosphatases (PTPs) in G protein-coupled receptor (GPCR) signaling pathways, the modulation of this enzyme family by that type of receptor can become an important experimental question. Here, we describe two different methods, an in-gel and a colorimetric PTP assay, to evaluate the modulation of PTP activity after stimulation with GPCR agonists.

Key words

Protein-tyrosine phosphatase In-gel phosphatase assay Colorimetric phosphatase assay GPCR Phosphatase activity 



This work was supported by Canadian Institutes of Health Research grant (#MT6822).


  1. 1.
    Prabakaran S, Lippens G, Steen H et al (2012) Post-translational modification: nature’s escape from genetic imprisonment and the basis for dynamic information encoding. Wiley Interdiscip Rev Syst Biol Med 4:565–583CrossRefGoogle Scholar
  2. 2.
    Attwood PV (2013) Histidine kinases from bacteria to humans. Biochem Soc Trans 41:1023–1028CrossRefGoogle Scholar
  3. 3.
    den HJ (2003) Regulation of protein phosphatases in disease and behaviour. EMBO Rep 4:1027–1032CrossRefGoogle Scholar
  4. 4.
    Allen KN, Dunaway-Mariano D (2004) Phosphoryl group transfer: evolution of a catalytic scaffold. Trends Biochem Sci 29:495–503CrossRefGoogle Scholar
  5. 5.
    Patterson KI, Brummer T, O’brien PM et al (2009) Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem J 418:475–489CrossRefGoogle Scholar
  6. 6.
    Tonks NK (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol 7:833–846CrossRefGoogle Scholar
  7. 7.
    Pao LI, Badour K, Siminovitch KA et al (2007) Nonreceptor protein-tyrosine phosphatases in immune cell signaling. Annu Rev Immunol 25:473–523CrossRefGoogle Scholar
  8. 8.
    Tonks NK (2013) Protein tyrosine phosphatases: from housekeeping enzymes to master-regulators of signal transduction. FEBS J 280:346–378CrossRefGoogle Scholar
  9. 9.
    Kang N-I, Yoon H-Y, Kim H-A et al (2011) Protein kinase CK2/PTEN pathway plays a key role in platelet-activating factor-mediated murine anaphylactic shock. J Immunol 186:6625–6632CrossRefGoogle Scholar
  10. 10.
    Kim H-A, Kim K-J, Seo KH et al (2012) PTEN/MAPK pathways play a key role in platelet-activating factor-induced experimental pulmonary tumor metastasis. FEBS Lett 586:4296–4302CrossRefGoogle Scholar
  11. 11.
    Ni Y, Sinnett-Smith J, Young SH et al (2013) PKD1 mediates negative feedback of PI3K/Akt activation in response to G protein-coupled receptors. PLoS One 8:e73149CrossRefGoogle Scholar
  12. 12.
    Lapointe F, Stiffel M, Auger J-P et al (2015) Platelet-activating factor induces du-al-specificity phosphatase 1 and 5 gene expression. Pharmacol Pharm 6:442–450CrossRefGoogle Scholar
  13. 13.
    Suen JY, Gardiner B, Grimmond S et al (2010) Profiling gene expression induced by protease-activated receptor 2 (PAR2) activation in human kidney cells. PLoS One 5:e13809CrossRefGoogle Scholar
  14. 14.
    Mancini AD, Battista JAD (2011) The cardinal role of the phospholipase A2/cyclooxygenase-2/prostaglandin E synthase/prostaglandin E2 (PCPP) axis in inflammostasis. Inflamm Res 60:1083–1092CrossRefGoogle Scholar
  15. 15.
    Venema RC, Venema VJ, Eaton DC et al (1998) Angiotensin II-induced tyrosine phosphorylation of signal transducers and activators of transcription 1 is regulated by Janus-activated kinase 2 and Fyn kinases and mitogen-activated protein kinase phosphatase 1. J Biol Chem 273:30795–30800CrossRefGoogle Scholar
  16. 16.
    Willoughby EA, Collins MK (2005) Dynamic interaction between the dual specificity phosphatase MKP7 and the JNK3 scaffold protein β-arrestin 2. J Biol Chem 280:25651–25658CrossRefGoogle Scholar
  17. 17.
    Xu Y, Fisher GJ (2012) Receptor type protein tyrosine phosphatases (RPTPs) – roles in signal transduction and human disease. J Cell Commun Signal 6:125–138CrossRefGoogle Scholar
  18. 18.
    Nunes-Xavier CE, Martín-Pérez J, Elson A et al (2013) Protein tyrosine phosphatases as novel targets in breast cancer therapy. Biochim Biophys Acta 1836:211–226PubMedGoogle Scholar
  19. 19.
    Zhu JW, Doan K, Park J et al (2011) Receptor-like tyrosine phosphatases CD45 and CD148 have distinct functions in chemoattractant-mediated neutrophil migration and response to S. aureus. Immunity 35:757–769CrossRefGoogle Scholar
  20. 20.
    Lee J-H, Choi S-H, Lee B-H et al (2013) Activation of lysophosphatidic acid receptor by gintonin inhibits Kv1.2 channel activity: involvement of tyrosine kinase and receptor protein tyrosine phosphatase α. Neurosci Lett 548:143–148CrossRefGoogle Scholar
  21. 21.
    Imbrici P, Tucker SJ, D’Adamo MC et al (2000) Role of receptor protein tyrosine phosphatase alpha (RPTPalpha) and tyrosine phosphorylation in the serotonergic inhibition of voltage-dependent potassium channels. Pflugers Arch 441:257–262CrossRefGoogle Scholar
  22. 22.
    Tsai W, Morielli AD, Cachero TG et al (1999) Receptor protein tyrosine phosphatase alpha participates in the m1 muscarinic acetylcholine receptor-dependent regulation of Kv1.2 channel activity. EMBO J 18:109–118CrossRefGoogle Scholar
  23. 23.
    Chernock RD, Cherla RP, RK G (2001) SHP2 and cbl participate in alpha-chemokine receptor CXCR4-mediated signaling pathways. Blood 97:608–615CrossRefGoogle Scholar
  24. 24.
    Vila-Coro AJ, Rodríguez-Frade JM, Martín De Ana A et al (1999) The chemokine SDF-1alpha triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB 13:1699–1710CrossRefGoogle Scholar
  25. 25.
    Lodeiro M, Theodoropoulou M, Pardo M et al (2009) c-Src Regulates Akt Signaling in Response to Ghrelin via β-Arrestin Signaling-Independent and -Dependent Mechanisms. PLoS ONE 4:e4686CrossRefGoogle Scholar
  26. 26.
    Lodeiro M, Alén BO, Mosteiro CS et al (2011) The SHP-1 protein tyrosine phosphatase negatively modulates Akt signaling in the ghrelin/GHSR1a system. Mol Biol Cell 22:4182–4191CrossRefGoogle Scholar
  27. 27.
    Hamel-Côté G, Gendron D, Rola-Pleszczynski M et al (2017) Regulation of platelet-activating factor-mediated protein tyrosine phosphatase 1B activation by a Janus kinase 2/calpain pathway. PLoS One 12:e0180336CrossRefGoogle Scholar
  28. 28.
    Shen Y, Schneider G, Cloutier JF et al (1998) Direct association of protein-tyrosine phosphatase PTP-PEST with paxillin. J Biol Chem 273:6474–6481CrossRefGoogle Scholar
  29. 29.
    Kappert K, Peters KG, Böhmer FD et al (2005) Tyrosine phosphatases in vessel wall signaling. Cardiovasc Res 65:587–598CrossRefGoogle Scholar
  30. 30.
    Meng T-C, Hsu S-F, NK T (2005) Development of a modified in-gel assay to identify protein tyrosine phosphatases that are oxidized and inactivated in vivo. Methods 35:28–36CrossRefGoogle Scholar
  31. 31.
    Burridge K, Nelson A (1995) An in-gel assay for protein tyrosine phosphatase activity: detection of widespread distribution in cells and tissues. Anal Biochem 232:56–64CrossRefGoogle Scholar
  32. 32.
    Haase H, Maret W (2003) Intracellular zinc fluctuations modulate protein tyrosine phosphatase activity in insulin/insulin-like growth factor-1 signaling. Exp Cell Res 291:289–298CrossRefGoogle Scholar
  33. 33.
    Bellomo E, Birla KS, Massarotti A et al (2016) The metal face of protein tyrosine phosphatase 1B., The metal face of protein tyrosine phosphatase 1B. Coord Chem Rev 327–328:70–83CrossRefGoogle Scholar
  34. 34.
    Huyer G, Liu S, Kelly J et al (1997) Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J Biol Chem 272:843–851CrossRefGoogle Scholar
  35. 35.
    Markova B, Gulati P, Herrlich PA et al (2005) Investigation of protein-tyrosine phosphatases by in-gel assays. Methods 35:22–27CrossRefGoogle Scholar
  36. 36.
    Hallé M, Liu Y-C, Hardy S et al (2007) Caspase-3 Regulates catalytic activity and scaffolding functions of the protein tyrosine phosphatase PEST, a novel modulator of the apoptotic response. Mol Cell Biol 27:1172–1190CrossRefGoogle Scholar
  37. 37.
    Walker JM (1996) The protein protocols handbook. Springer Science & Business Media, BerlinCrossRefGoogle Scholar
  38. 38.
    Kameshita I, Ishida A, Okuno S et al (1997) Detection of protein phosphatase activities in sodium dodecyl sulfate-polyacrylamide gel using peptide substrates. Anal Biochem 245:149–153CrossRefGoogle Scholar
  39. 39.
    Kameshita I, Baba H, Umeda Y et al (2010) In-gel protein phosphatase assay using fluorogenic substrates. Anal Biochem 400:118–122CrossRefGoogle Scholar
  40. 40.
    Heneberg P, Dráberová L, Bambousková M et al (2010) Down-regulation of protein-tyrosine phosphatases activates an immune receptor in the absence of its translocation into lipid rafts. J Biol Chem 285:12787–12802CrossRefGoogle Scholar
  41. 41.
    McCain DF, Zhang Z-Y (2002) Assays for protein-tyrosine phosphatases. Methods Enzymol 345:507–518CrossRefGoogle Scholar
  42. 42.
    Lorenz U (2011) Protein tyrosine phosphatase assays. Curr Protoc Immunol 11:Unit 11.7PubMedGoogle Scholar
  43. 43.
    Yan JX, Wait R, Berkelman T et al (2000) A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 21:3666–3672CrossRefGoogle Scholar
  44. 44.
    Zhang M, Yogesha SD, Mayfield JE et al (2013) Viewing serine/threonine protein phosphatases through the eyes of drug designers. FEBS J 280:4739–4760CrossRefGoogle Scholar
  45. 45.
    Lim W, Mayer B, Pawson T (2014) Cell signaling: principles and mechanisms. Taylor & Francis, RoutledgeGoogle Scholar
  46. 46.
    Montalibet J, Skorey KI, BP K (2005) Protein tyrosine phosphatase: enzymatic assays. Methods 35:2–8CrossRefGoogle Scholar
  47. 47.
    Mercan F, Bennett AM (2010) Analysis of protein tyrosine phosphatases and substrates. Curr Protoc Mol Biol Chapter 18:Unit 18.16PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Geneviève Hamel-Côté
    • 1
  • Fanny Lapointe
    • 1
  • Jana Stankova
    • 1
    Email author
  1. 1.Division of Immunology, Department of Pediatrics, Faculty of Medicine and Health SciencesUniversité de SherbrookeQCCanada

Personalised recommendations