Skip to main content

Assessing Acinetobacter baumannii Virulence and Persistence in a Murine Model of Lung Infection

  • Protocol
  • First Online:
Acinetobacter baumannii

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1946))

Abstract

Acinetobacter baumannii is a Gram-negative opportunistic pathogen and a leading cause of ventilator-associated pneumonia. Murine models of A. baumannii lung infection allow researchers to experimentally assess A. baumannii virulence and host response. Intranasal administration of A. baumannii models acute lung infection. This chapter describes the methods to test A. baumannii virulence in a murine model of lung infection, including assessing the competitive index of a bacterial mutant and the associated inflammatory responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peleg AY, Seifert H, Paterson DL (2008) Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 21(3):538–582. https://doi.org/10.1128/CMR.00058-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Talbot GH, Bradley J, Edwards JE Jr, Gilbert D, Scheld M, Bartlett JG (2006) Bad bugs need drugs: an update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. Clin Infect Dis 42(5):657–668. https://doi.org/10.1086/499819

    Article  PubMed  Google Scholar 

  3. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, Pulcini C, Kahlmeter G, Kluytmans J, Carmeli Y, Ouellette M, Outterson K, Patel J, Cavaleri M, Cox EM, Houchens CR, Grayson ML, Hansen P, Singh N, Theuretzbacher U, Magrini N, Group WHOPPLW (2018) Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18:318–327. https://doi.org/10.1016/S1473-3099(17)30753-3

    Article  PubMed  Google Scholar 

  4. Sievert DM, Ricks P, Edwards JR, Schneider A, Patel J, Srinivasan A, Kallen A, Limbago B, Fridkin S, Facilities NHSNTNaPN (2013) Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect Control Hosp Epidemiol 34(1):1–14. https://doi.org/10.1086/668770

    Article  PubMed  Google Scholar 

  5. Weiner LM, Webb AK, Limbago B, Dudeck MA, Patel J, Kallen AJ, Edwards JR, Sievert DM (2016) Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect Control Hosp Epidemiol 37(11):1288–1301. https://doi.org/10.1017/ice.2016.174

    Article  PubMed  Google Scholar 

  6. Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, Moreno R, Lipman J, Gomersall C, Sakr Y, Reinhart K, Investigators EIGo (2009) International study of the prevalence and outcomes of infection in intensive care units. JAMA 302(21):2323–2329. https://doi.org/10.1001/jama.2009.1754

    Article  CAS  PubMed  Google Scholar 

  7. Dexter C, Murray GL, Paulsen IT, Peleg AY (2015) Community-acquired Acinetobacter baumannii: clinical characteristics, epidemiology and pathogenesis. Expert Rev Anti-Infect Ther 13(5):567–573. https://doi.org/10.1586/14787210.2015.1025055

    Article  CAS  PubMed  Google Scholar 

  8. Harding CM, Kinsella RL, Palmer LD, Skaar EP, Feldman MF (2016) Medically relevant Acinetobacter species require a type II secretion system and specific membrane-associated chaperones for the export of multiple substrates and full virulence. PLoS Pathog 12(1):e1005391. https://doi.org/10.1371/journal.ppat.1005391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kinsella RL, Lopez J, Palmer LD, Salinas ND, Skaar EP, Tolia NH, Feldman MF (2017) Defining the interaction of the protease CpaA with its type II secretion chaperone CpaB and its contribution to virulence in Acinetobacter species. J Biol Chem 292(48):19628–19638. https://doi.org/10.1074/jbc.M117.808394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Johnson TL, Waack U, Smith S, Mobley H, Sandkvist M (2015) Acinetobacter baumannii is dependent on the type II secretion system and its substrate LipA for lipid utilization and in vivo fitness. J Bacteriol 198(4):711–719. https://doi.org/10.1128/JB.00622-15

    Article  CAS  PubMed  Google Scholar 

  11. Harding CM, Hennon SW, Feldman MF (2018) Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat Rev Microbiol 16(2):91–102. https://doi.org/10.1038/nrmicro.2017.148

    Article  CAS  PubMed  Google Scholar 

  12. Hood MI, Mortensen BL, Moore JL, Zhang Y, Kehl-Fie TE, Sugitani N, Chazin WJ, Caprioli RM, Skaar EP (2012) Identification of an Acinetobacter baumannii zinc acquisition system that facilitates resistance to calprotectin-mediated zinc sequestration. PLoS Pathog 8(12):e1003068. https://doi.org/10.1371/journal.ppat.1003068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mortensen BL, Rathi S, Chazin WJ, Skaar EP (2014) Acinetobacter baumannii response to host-mediated zinc limitation requires the transcriptional regulator Zur. J Bacteriol 196(14):2616–2626. https://doi.org/10.1128/JB.01650-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mortensen BL, Skaar EP (2013) The contribution of nutrient metal acquisition and metabolism to Acinetobacter baumannii survival within the host. Front Cell Infect Microbiol 3:95. https://doi.org/10.3389/fcimb.2013.00095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nairn BL, Lonergan ZR, Wang J, Braymer JJ, Zhang Y, Calcutt MW, Lisher JP, Gilston BA, Chazin WJ, de Crecy-Lagard V, Giedroc DP, Skaar EP (2016) The response of Acinetobacter baumannii to zinc starvation. Cell Host Microbe 19(6):826–836. https://doi.org/10.1016/j.chom.2016.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Juttukonda LJ, Chazin WJ, Skaar EP (2016) Acinetobacter baumannii coordinates urea metabolism with metal import to resist host-mediated metal limitation. mBio 7(5):e01475-16. https://doi.org/10.1128/mBio.01475-16

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gaddy JA, Arivett BA, McConnell MJ, Lopez-Rojas R, Pachon J, Actis LA (2012) Role of acinetobactin-mediated iron acquisition functions in the interaction of Acinetobacter baumannii strain ATCC 19606T with human lung epithelial cells, Galleria mellonella caterpillars, and mice. Infect Immun 80(3):1015–1024. https://doi.org/10.1128/IAI.06279-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hood MI, Becker KW, Roux CM, Dunman PM, Skaar EP (2013) Genetic determinants of intrinsic colistin tolerance in Acinetobacter baumannii. Infect Immun 81(2):542–551. https://doi.org/10.1128/IAI.00704-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jacobs AC, Hood I, Boyd KL, Olson PD, Morrison JM, Carson S, Sayood K, Iwen PC, Skaar EP, Dunman PM (2010) Inactivation of phospholipase D diminishes Acinetobacter baumannii pathogenesis. Infect Immun 78(5):1952–1962. https://doi.org/10.1128/IAI.00889-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Geisinger E, Isberg RR (2015) Antibiotic modulation of capsular exopolysaccharide and virulence in Acinetobacter baumannii. PLoS Pathog 11(2):e1004691. https://doi.org/10.1371/journal.ppat.1004691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gebhardt MJ, Gallagher LA, Jacobson RK, Usacheva EA, Peterson LR, Zurawski DV, Shuman HA (2015) Joint transcriptional control of virulence and resistance to antibiotic and environmental stress in Acinetobacter baumannii. mBio 6(6):e01660-15. https://doi.org/10.1128/mBio.01660-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang N, Ozer EA, Mandel MJ, Hauser AR (2014) Genome-wide identification of Acinetobacter baumannii genes necessary for persistence in the lung. mBio 5(3):e01163-14. https://doi.org/10.1128/mBio.01163-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Subashchandrabose S, Smith S, DeOrnellas V, Crepin S, Kole M, Zahdeh C, Mobley HL (2016) Acinetobacter baumannii genes required for bacterial survival during bloodstream infection. mSphere 1(1):e00013-15. https://doi.org/10.1128/mSphere.00013-15

    Article  PubMed  Google Scholar 

  24. Peleg AY, Jara S, Monga D, Eliopoulos GM, Moellering RC Jr, Mylonakis E (2009) Galleria mellonella as a model system to study Acinetobacter baumannii pathogenesis and therapeutics. Antimicrob Agents Chemother 53(6):2605–2609. https://doi.org/10.1128/AAC.01533-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bhuiyan MS, Ellett F, Murray GL, Kostoulias X, Cerqueira GM, Schulze KE, Mahamad Maifiah MH, Li J, Creek DJ, Lieschke GJ, Peleg AY (2016) Acinetobacter baumannii phenylacetic acid metabolism influences infection outcome through a direct effect on neutrophil chemotaxis. Proc Natl Acad Sci U S A 113(34):9599–9604. https://doi.org/10.1073/pnas.1523116113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pachon-Ibanez ME, Docobo-Perez F, Lopez-Rojas R, Dominguez-Herrera J, Jimenez-Mejias ME, Garcia-Curiel A, Pichardo C, Jimenez L, Pachon J (2010) Efficacy of rifampin and its combinations with imipenem, sulbactam, and colistin in experimental models of infection caused by imipenem-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 54(3):1165–1172. https://doi.org/10.1128/AAC.00367-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Joly-Guillou ML, Wolff M, Pocidalo JJ, Walker F, Carbon C (1997) Use of a new mouse model of Acinetobacter baumannii pneumonia to evaluate the postantibiotic effect of imipenem. Antimicrob Agents Chemother 41(2):345–351

    Article  CAS  Google Scholar 

  28. Russo TA, Beanan JM, Olson R, MacDonald U, Luke NR, Gill SR, Campagnari AA (2008) Rat pneumonia and soft-tissue infection models for the study of Acinetobacter baumannii biology. Infect Immun 76(8):3577–3586. https://doi.org/10.1128/IAI.00269-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bernabeu-Wittel M, Pichardo C, Garcia-Curiel A, Pachon-Ibanez ME, Ibanez-Martinez J, Jimenez-Mejias ME, Pachon J (2005) Pharmacokinetic/pharmacodynamic assessment of the in-vivo efficacy of imipenem alone or in combination with amikacin for the treatment of experimental multiresistant Acinetobacter baumannii pneumonia. Clin Microbiol Infect 11(4):319–325. https://doi.org/10.1111/j.1469-0691.2005.01095.x

    Article  CAS  PubMed  Google Scholar 

  30. Braunstein A, Papo N, Shai Y (2004) In vitro activity and potency of an intravenously injected antimicrobial peptide and its DL amino acid analog in mice infected with bacteria. Antimicrob Agents Chemother 48(8):3127–3129. https://doi.org/10.1128/AAC.48.8.3127-3129.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Crandon JL, Kim A, Nicolau DP (2009) Comparison of tigecycline penetration into the epithelial lining fluid of infected and uninfected murine lungs. J Antimicrob Chemother 64(4):837–839. https://doi.org/10.1093/jac/dkp301

    Article  CAS  PubMed  Google Scholar 

  32. Koomanachai P, Kim A, Nicolau DP (2009) Pharmacodynamic evaluation of tigecycline against Acinetobacter baumannii in a murine pneumonia model. J Antimicrob Chemother 63(5):982–987. https://doi.org/10.1093/jac/dkp056

    Article  CAS  PubMed  Google Scholar 

  33. Song JY, Cheong HJ, Lee J, Sung AK, Kim WJ (2009) Efficacy of monotherapy and combined antibiotic therapy for carbapenem-resistant Acinetobacter baumannii pneumonia in an immunosuppressed mouse model. Int J Antimicrob Agents 33(1):33–39. https://doi.org/10.1016/j.ijantimicag.2008.07.008

    Article  CAS  PubMed  Google Scholar 

  34. Noto MJ, Boyd KL, Burns WJ, Varga MG, Peek RM Jr, Skaar EP (2015) Toll-like receptor 9 contributes to defense against Acinetobacter baumannii infection. Infect Immun 83(10):4134–4141. https://doi.org/10.1128/IAI.00410-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Knapp S, Wieland CW, Florquin S, Pantophlet R, Dijkshoorn L, Tshimbalanga N, Akira S, van der Poll T (2006) Differential roles of CD14 and toll-like receptors 4 and 2 in murine Acinetobacter pneumonia. Am J Respir Crit Care Med 173(1):122–129. https://doi.org/10.1164/rccm.200505-730OC

    Article  CAS  PubMed  Google Scholar 

  36. Kale SD, Dikshit N, Kumar P, Balamuralidhar V, Khameneh HJ, Bin Abdul Malik N, Koh TH, Tan GGY, Tan TT, Mortellaro A, Sukumaran B (2017) Nod2 is required for the early innate immune clearance of Acinetobacter baumannii from the lungs. Sci Rep 7(1):17429. https://doi.org/10.1038/s41598-017-17653-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Noto MJ, Becker KW, Boyd KL, Schmidt AM, Skaar EP (2017) RAGE-mediated suppression of interleukin-10 results in enhanced mortality in a murine model of Acinetobacter baumannii sepsis. Infect Immun 85(3):e00954-16. https://doi.org/10.1128/IAI.00954-16

    Article  PubMed  PubMed Central  Google Scholar 

  38. Qiu H, Kuolee R, Harris G, Chen W (2009) Role of NADPH phagocyte oxidase in host defense against acute respiratory Acinetobacter baumannii infection in mice. Infect Immun 77(3):1015–1021. https://doi.org/10.1128/IAI.01029-08

    Article  CAS  PubMed  Google Scholar 

  39. Tribromoethanol (Avertin) (2006) Cold Spring Harb Protoc 2006(1):pdb.rec701. https://doi.org/10.1101/pdb.rec701

    Article  Google Scholar 

  40. Moore JL, Becker KW, Nicklay JJ, Boyd KL, Skaar EP, Caprioli RM (2014) Imaging mass spectrometry for assessing temporal proteomics: analysis of calprotectin in Acinetobacter baumannii pulmonary infection. Proteomics 14(7–8):820–828. https://doi.org/10.1002/pmic.201300046

    Article  CAS  PubMed  Google Scholar 

  41. Fisher S, Burgess WL, Hines KD, Mason GL, Owiny JR (2016) Interstrain differences in CO2-induced pulmonary hemorrhage in mice. J Am Assoc Lab Anim Sci 55(6):811–815

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Michael J. Noto, Zachery R. Lonergan, and Lillian J. Juttukonda for critical reading of the manuscript. This work was supported by the National Institutes of Health (NIH) research grant AI101171 to E.P.S. and fellowships F32AI122516 to L.D.P. and T32HL094296 to L.D.P. and E.R.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric P. Skaar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Palmer, L.D., Green, E.R., Sheldon, J.R., Skaar, E.P. (2019). Assessing Acinetobacter baumannii Virulence and Persistence in a Murine Model of Lung Infection. In: Biswas, I., Rather, P. (eds) Acinetobacter baumannii. Methods in Molecular Biology, vol 1946. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9118-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9118-1_26

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9117-4

  • Online ISBN: 978-1-4939-9118-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics